Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 3, 2015
Page(s) 261 - 272
DOI https://doi.org/10.1051/limn/2015020
Published online 09 November 2015
  • Ahlstrom E.H., 1940. A revision of the Rotatorian genera Brachionus and Platyias with descriptions of one new species and two new varieties. Bull. Am. Mus. Nat. Hist., 77, 143–148. [Google Scholar]
  • Alekseev V.R., 2002. Copepoda. In: Fernando, C.H. (ed.), A Guide to Tropical Freshwater Zooplankton, Backhugs Publ, 123–188. [Google Scholar]
  • Álvarez Blanco I.C., Cejudo Figueiras I., De Godos I., Muñoz R. and Blanco S., 2011. Las diatomeas de los salares del Altiplano boliviano: singularidades florísticas. Bol. R. Soc. Esp. Hist. Nat. Secc. Biol., 105, 67–82. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • APHA 1992. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington. [Google Scholar]
  • Arnd H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia, 255, 231–246. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Battauz Y., José de Paggi S., Romano M. and Barbaeris I., 2013. Zooplankton characterization of the Pampean saline shallow lakes, habitat of the Andean Flamingoes. J. Limnol., 72, 531–542. [CrossRef] [Google Scholar]
  • Boyle T.P., Caziani S.M. and Walermire R.G., 2004. Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America. Wetl. Ecol. Manage., 12, 563–573. [CrossRef] [Google Scholar]
  • Collier K.J., 1987. Spectrophotometric determination of dissolved organic carbon in some South Island streams and rivers (note). J. Mar. Freshw. Res., 21, 349–351. [CrossRef] [Google Scholar]
  • Conzonno V., 2009. Materia orgánica. Sustancias húmicas. In: Edulp (ed.), Limnología Química (1ra edn), Universidad Nacional de La Plata, 191–209. (La Plata). [Google Scholar]
  • Cooper R.N. and Wissel B., 2012. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes. Aquat. Biosyst., 8–29. [PubMed] [Google Scholar]
  • Dangaus N.V., 1976. Descripción sistemática de los parámetros morfométricos considerados en las lagunas pampásicas. Limnobios, 1, 35–59. [Google Scholar]
  • De Haan H. and De Boer T., 1987. Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic lake Tjeukemeer. Water Res., 21, 731–734. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • De los Ríos P. and Crespo J., 2004. Salinity effect on the abundance of Boeckella poopoensis (Copepoda, Calanoida) in saline ponds in the Atacama Desert, northern Chile. Crustaceana, 77, 417–423. [CrossRef] [Google Scholar]
  • Derry A., Prepas E. and Hebert P., 2003. A comparison of zooplankton communities in saline lake water with variable anion composition. Hydrobiologia, 505, 199–215. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Drago E. and Quirós R., 1996. The hydrochemistry of the inland waters of Argentina: a review. Int. J. Salt Lake Res., 4, 315–325. [CrossRef] [Google Scholar]
  • Echaniz S., Vignatti A., José de Paggi S., Paggi J.C. and Pilati A., 2006. Zooplankton seasonal abundance of South American saline shallow lakes. Int. Rev. Hydrobiol., 91, 86–100. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • García de Emilliani M.O., 1997. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Parana River, Argentina). Hydrobiologia, 357, 1–15. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Hammer U.T., 1986. Saline Lake Ecosystems of the World, Junk Publishers, Dordrecht, Holland. [Google Scholar]
  • Hammer U.T., Shamess J. and Haynes R.C., 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia, 105, 1–26. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Hilton J. and Rigg E., 1983. Determination of nitrate in lake water by the adaptation of the hydrazine-copper reduction method for use on a discrete analyser: performance statistics and an instrument-induced difference from segmented flow conditions. Analyst, 108, 1026–1028. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kieffer L.A., 1981. Evaluación de la materia orgánica disuelta. Rev. Asoc. Cienc. Nat. Litoral, 12, 88–95. [Google Scholar]
  • Kirk J.T.O., 1994. Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, Cambridge, 401 p. [Google Scholar]
  • Komarék J. and Anagnostidis K., 1999. Cyanoprokariota. 1. Chroococcales. In: Ettl H., Gärtner G., Heynig G. and Mollenhauer D. (eds.), Subwasserflora von Mitteleuropa.19. Gustav Fisher, Jena, Stutgart. [Google Scholar]
  • Komárek J. and Anagnostidis M., 2005. Cyanoprokaryota 2. Teil/ 2nd Part: Oscillatoriales. In: Büdel B., Krienitz L., Gärtner G. and Scnagerl M. (eds.), Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg. [Google Scholar]
  • Komárek J. and Fott B., 1983. Chlorophyceae, chlorococcales. In: Huber-Pestalozzi, G. (ed.), Das Phytoplankton des Sdwasswes. Die Binnenggewasser, vol. 16(5). Schweizerbart'sché Verlagbuchhandlung, Stuttgart. [Google Scholar]
  • Kořínek V., 1981. Diaphanosoma birgei n. sp (Crustacea, Cladocera), a new species from America and it's widely distribution species Diaphanosoma birgei ssp. L acustrisn ssp. Can. J. Zool., 59, 1115–1121. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kořínek V., 2002. Cladocera. In: Fernando C.H. (ed.), A guide to tropical freshwater zooplankton, Backhuys Publ, the Netherlands, 69–122. [Google Scholar]
  • Korovchinski N.M., 1992. Sididae and Holopedidae (Crustacea: Daphniiformes). Guides to identification of the microinvertebrates of the continental waters of the world, SPB Academic Publ., The Hage, 82 p. [Google Scholar]
  • Koste W., 1978. Rotatoria. Die Radertiere Mitteleuropas, Gebruder Borntraeger, Berlin, 673 p. [Google Scholar]
  • Krammer K. and Lange-Bertalot H., 1991. Bacillariophyceae. 3. Teil Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H., Gerloff J., Heynig H. and Mollenhauer D. (eds.), Süsswasserflora von Mitteleuropa, Gustav Fischer Verlag, Stuttgart. [Google Scholar]
  • Kritzberg E.S., Cole J.J., Pace M.L., Granéli M. and Bade D.L., 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnol. Oceanogr., 49, 588–596. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Laurion I., Ventura M., Catalan J., Psenner R. and Sommaruga R., 2000. Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among- and within-lake variability. Limnol. Oceanogr., 45, 1274–1288. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Lepš J. and Šmilauer P., 1998. Multivariate Analysis of Ecological Data. Faculty of Biological Sciences, University of South Bohemia Ceské Budejovice, Czech Republic, 110 p. [Google Scholar]
  • Locascio de Mitrovic C.A., Villagra de Gamundi A., Juárez J. and Ceraolo M., 2005. Características limnológicas y zooplancton de cinco lagunas de la Puna – Argentina. Rev. Bol. Ecol. Cons. Amb., 40, 12–26. [Google Scholar]
  • Maidana N.I., Seeligmann C.T. and Morales M.R., 2009. Bacillariophyceae del Complejo Lagunar Vilama (Jujuy, Argentina). Bol. R. Soc. Esp. Hist. Nat. Secc. Biol., 44, 257–271. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Marconi P., 2010. Técnicas de monitoreo de condiciones ecológicas en la Red de Humedales de Importancia para la Conservación de Flamencos Altoandinos. In: Marconi P. (ed.), Manual de técnicas de monitoreo de condiciones ecológicas para el manejo integrado de la red de humedales de importancia para la conservación de flamencos altoandinos, Fundación YUCHAN, Argentina, 8–14. [Google Scholar]
  • Mascitti V. and Kravetz F.O., 2002. Bill morphology of South American flamingos. Condor, 104, 73–83. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Meehl G.H., Arblaster J.M. and Tebaldi C., 2005. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett., 32, 18719. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Mirande V. and Tracanna B., 2009. Estructura y controles abióticos del fitoplancton en humedales de altura. Ecol. Austr., 19, 119–128. [Google Scholar]
  • Morales Baquero R., Carrillo R., Reche I. and Sánchez-Castillo P.M., 1999. Nitrogen–phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Can. J. Fish. Aquat. Sci., 56, 1809–1817. [CrossRef] [Google Scholar]
  • Padisák J. and Dokulil M., 1994. Meroplankton dinamic in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia, 289, 23–42. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Psenner R., 2002. Alpine waters in the interplay of globa change: complex links – simple effects? In: Steininger K.W. and Weck-Hannemann H. (eds.), Global Environmental Change in Alpine Region. New Horizons in Environmental Economics, Edward Eldgar, Cheltenham, UK, Northampton, MA, USA, 271 p. [Google Scholar]
  • Redfield A.C., Ketchum B.H. and Richards F.A., 1963. The influence of organisms on the composition of seawater. In: Hill, M.N. (ed.), The Sea. Vol. 2. Interscience Publishers, John Wiley, New York, pp. 26–77. [Google Scholar]
  • Rejas D., Valverde C. and Fernández C.E., 2012. Limitación por nutrientes y pastoreo como factores de control de las densidades de bacterias y algas planctónicas en una laguna altoandina (Cochabamba, Bolivia). Rev. Bol. Ecol. Cons. Amb., 30, 01–12. [Google Scholar]
  • Salms C.R., Saros J., Martin C.S. and Erickson J.M., 2009. Patterns of seasonal phytoplankton distribution in prairie saline lakes of the northern Great Plains (U.S.A.). Saline Syst., 5, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Saros J.E. and Fritz S.E., 2000. Changes in the growth rates of saline-lake diatoms in response to variation in salinity, brine type, and nitrogen form. J. Plankton Res., 22, 1071–1083. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Schelske C.L., Aldridge F.J. and Kenney W.F., 1999. Assessing nutrient limitation and trophic state in Florida lakes In: Reddy K.R., O'connor G.A. and Schelske C.L. (eds.), Phosphorus Biogeochemistry in Subtropical Ecosystems, Lewis Publishers, Boca Rotón, 321–342. [Google Scholar]
  • Seeligmann C., Maidana N.I. and Morales M., 2008. Diatomeas (Bacillariophyceae) de humedales de altura de la provincia de Jujuy-Argentina. Bol. R. Soc. Esp. Hist. Nat. Secc. Biol., 43, 1–17. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Sommaruga R., 2001. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B, Biol., 62, 35–42. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Stevict F., Mihaljevic M. and Spoljaric D., 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia, 709, 143–158. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Stewart A.J. and Wetzel R.G., 1981. Asymmetrical relationships between absorbance, fluorescence, and dissolved organic carbon. Limnology and Oceanography, 26, 590–597. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Tell G. and Conforti V., 1986. Euglenophyta pigmentadas de Argentina. In: Cramer (ed.), Bibliotheca Phycologica, Berlin, Germany. [Google Scholar]
  • Timms B.V., 1993. Saline lakes of the Paroo, inland New South Wales, Australia. Hydrobiologia, 267, 269–289. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Tolotti M., Thies M., Cantonati M., Hansen C. and Thaler B., 2006. Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the Northern and Southern slope of the Eastern Alps: biodiversity, taxa distribution and their driving variables. Hydrobiologia, 502, 331–348. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Verein. Limnol., 9, 1–38. [Google Scholar]
  • Van den Hoek C., Mann D.G. and Jahns H.M., 1995. Algae: an Introduction to Phycology, Cambridge University Press, UK. [Google Scholar]
  • Williams W.D., 2002. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv., 29, 154–167. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Williams W.D., Boulton A.J. and Taaffe R.G., 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia, 197, 257–266. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Zalocar de Domitrovic Y. and Maidana N.I., 1997. Taxonomic and ecological studies of the Parana River diatom flora (Argentina). In: J. Cramer (ed.). Biblioteca diatomológica, Stuttgart, Berlin. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.