Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 4, 2014
Page(s) 279 - 287
DOI https://doi.org/10.1051/limn/2014022
Published online 08 October 2014
  • Cabana G. and Rasmussen J.B., 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. USA, 93, 10844–10847. [Google Scholar]
  • Camin F., Perini M., Colombari G., Bontempo L., Versini G., 2008. Influence of dietary composition on the carbon, nitrogen, oxygen and hydrogen stable isotope rations of milk. Rapid. Comm. Mass. Spectrom., 22, 1690–1696. [Google Scholar]
  • Caroni R., Free G., Visconti A. and Manca M., 2012. Phytoplankton functional traits and seston stable isotopes ratio: a functional-based approach in a deep, subalpine lake, Lake Maggiore (N. Italy). J. Limnol., 71, 84–94. [Google Scholar]
  • Cattaneo A., Manca M. and Rasmussen J.B., 2004. Peculiarities in the stable isotope composition of organisms from an alpine lake. Aquat. Sci. 66, 440–445. [CrossRef] [Google Scholar]
  • de Bernardi R., Giussani G. and Manca M., 1987. Cladocera: predators and prey. Hydrobiology, 145, 225–243. [CrossRef] [Google Scholar]
  • DeMott W.R., 1986. The role of taste in food selection by freshwater zooplankton. Oecologia, 69, 334–340. [CrossRef] [PubMed] [Google Scholar]
  • DeMott W.R., 1995. Optimal foraging by a suspension-feeding copepod: responses to short-term and seasonal variation in food resources. Oecologia, 103, 230–240. [CrossRef] [PubMed] [Google Scholar]
  • Dussart B.H. and Defaye D., 2001. “Introduction to the Copepoda.” Guides to the Identification of the Microinvertebrates of the Continental Waters of the World (Netherlands). [Google Scholar]
  • Einsle U., 1996. Copepoda: Cyclopoida: Genera Cyclops, Megacyclops, Acanthocyclops. In: Dumont, H.J.F. (ed.), Guides to the Identification of the Microinvertebrates of Continental Waters of the World, Vol. 10, SPB Publisching, Amsterdam. [Google Scholar]
  • El-Sabaawi R., Dower J.F., Kainz M. and Mazumder A., 2009. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Mar. Biol., 156, 225–237. [Google Scholar]
  • Fadda A., Marková S., Kotlík P., Lugliè A., Padedda B., Buscarinu P., Sechi N. and Manca M., 2011. First record of planktonic crustaceans in Sardinian reservoirs. Biologia, 66, 856–865. [CrossRef] [Google Scholar]
  • Fadda A., Manca M., Camin F., Ziller L., Mariani A.M., Padedda B.M., Sechi N., Virdis T. and Lugliè A., 2014. “Study on the suspended particulate matter of a Mediterranean artificial lake (Sos Canales Lake) using Stable Isotope Analysis of carbon and nitrogen”. Submitted. [Google Scholar]
  • Finlay J.C. and Kendall C., 2008. Stable Isotopes in Ecology and Environmental Science. Stable Isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems, pp. 283–324. [Google Scholar]
  • Geraldes A.M. and Boavida M.J., 2004. What factors affect the pelagic cladocerans of the meso-eutrophic Azibo Reservoirs?. Ann. Limnol. - Int. J. Lim., 40, 101–111. [Google Scholar]
  • Gonçalves A.M., Pardal M.Â., Marques S.C., Mendes S., Fernández-Gómez M.J., Galindo-Villardón M.P. and Azeiteiro, U.M., 2012. Responses of Copepoda life-history stages to climatic variability in a Southern-European temperate estuary. Zoof. Stud., 51, 321–335. [Google Scholar]
  • Grey J., Jones R.I. and Sleep D., 2000. Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia, 123, 232–240. [CrossRef] [PubMed] [Google Scholar]
  • Grey J. and Jones R.I., 2001. Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol. Oceanogr., 46, 505–513. [Google Scholar]
  • Gu B., Chapman A.D. and Schelske C.L., 2006. Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a soft water eutrophic lake. Limnol. Oceanogr. 51, 2837–2848. [CrossRef] [Google Scholar]
  • Gyllström M. and Hansson L.A., 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci., 66, 274–295. [Google Scholar]
  • Henry R., Panarelli E.A., Caglierani S.M. and Casanova D.C., 2011. Plankton richness and abundance in several different hydrological situation in lakes later to a river: case a study in the mouth zone of a tributary into a tropical reservoir. Oecol. Aust., 15, 537–558. [CrossRef] [Google Scholar]
  • Karlsson J., Jonsson A., Meili M. and Jansson M., 2003. Control of zooplankton dependence on allochthonous organic carbon in humic clear water lakes in Northern Sweden. Limnol. Oceanogr., 48, 269–276. [Google Scholar]
  • Lee R.F., Hagen W. and Kattner G., 2006. Lipid storage in marine zooplankton. Mar. Ecol. Progr. Ser., 307, 273–306. [CrossRef] [Google Scholar]
  • Lehman M.F., Bernasconi S.M. and McKenzie J.A., 2004. Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnol. Oceanogr., 49, 415–429. [CrossRef] [Google Scholar]
  • Leira M. and Cantonati M., 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiology, 612, 171–184. [Google Scholar]
  • Lindeman R.L., 1942. The trophic-dynamic aspect of ecology. Ecology, 23, 399–417. [CrossRef] [Google Scholar]
  • Manca M. and Comoli P., 2000. Biomass estimates of freshwater zooplankton from length-carbon regression equations. J. Limnol., 59, 15–18. [CrossRef] [Google Scholar]
  • Marcarelli A.M., Colden V.B., Mineau M.M. and Hall R.O., 2011. Quantitiy and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology, 92, 1215–1225. [CrossRef] [PubMed] [Google Scholar]
  • Matthews B. and Mazumder A., 2003. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation. Limnol. Oceanogr., 50, 1404–1414. [Google Scholar]
  • Mauchline J., 1998. The Biology of Calanoid Copepods, Academic Press, London. [Google Scholar]
  • McCauley E., (1984). The estimation of abundance and biomass of zooplankton in samples. In: Downing J.A. and Rigler F.H. (eds.), A Manual of Methods for the Assessment of Secondary Productivity in Freshwater, Blackwell Scientific Publication, 228–265. [Google Scholar]
  • Moss B., Hering D., Green A.J., Aidoud A., Becares E., Beklioglu M., Bennion H., Boix D., Brucet S., Carvalho L., Clement B., Davidson T., Declerck, S., Dobson M., van Donk E., Dudley B., Feuchtmayr H., Friberg N., Grenouillet G., Hillebran H., Hobaek A., Irvine K., Jeppesen E., Johnson R., Jones I., Kernan M., Lauridsen T.L., Manca M., Meerhoff M., Olafsson J., Ormerod S., Papastergiadou E., Penning W.E., Ptacnik R., Quintana X., Sandin L., Seferlis M., Simpson G., Trigal C., Verdonschot P., Verschoor A.M. and Weyhenmeyer G.A., 2009. Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshwat. Rev., 2, 103–130. [Google Scholar]
  • Naselli-Flores N., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr. Deep and Mr Shallow Lake. Hydrobiology, 506, 13–21. [Google Scholar]
  • Niesel V., Hehn E., Sudbrack R., Willmitzer H. and Chorus I., 2007. The occurrence of the Dynophyte species Gymnodinium uberrimum and Peridinium willei in German reservoirs. J. Plank. Res., 29, 347–357. [Google Scholar]
  • Nowlin W.H., Evarts J.L. and Vanni M.J., 2005. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Fresh. Biol. 50, 301–322. [Google Scholar]
  • Perbiche-Neves G.R., Romero Ferreira R. and Gomes Nogueira M., 2011. Phytoplankton structure in two contrasting cascade reservoirs (Paranapanema River, Southeast Brazil). Biologia, 66, 967–976. [CrossRef] [Google Scholar]
  • Perga M.E. and Gerdeaux, D., 2006. Seasonal variability in the δ13C and δ15N values of the zooplankton taxa in two alpine lakes. Acta Ecol., 30, 69–77. [Google Scholar]
  • Peterson B.J. and Fry B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 293–320. [Google Scholar]
  • Petrusek A., Hobæk A., Nilssen J.P., Skage M., Černý M., Brede N. and Schwenk K., 2008. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool. Scr., 37, 507–519. [Google Scholar]
  • Post D.M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumption. Ecology, 83, 703–718. [CrossRef] [Google Scholar]
  • Power M., Guiguer K.R.R.A. and Barton D.R., 2003. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid. Commun. Mass Spectrom., 17, 1619–1625. [CrossRef] [PubMed] [Google Scholar]
  • Rau G.H., Takahashi T. and Des Marais D.J., 1989. Latitudinal variations in plankton C: implications for CO and productivity in past oceans. Nature, 341, 165. [Google Scholar]
  • Rau G.H., Takahashi T., Des Marais D.J., Repeta D.J. and Martin, J.H., 1992. The relationship between δ13C of organic matter and [CO2 (aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim. et Cosmochim. Acta, 56, 1413–1419. [Google Scholar]
  • Shurin J.B., Gruner D.S. and Hillebrand H., 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B., 273, 1–9. [CrossRef] [Google Scholar]
  • Smyntek P.M., Teece M.A., Schulz K.L. and Storch A.J., 2008. Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshwat. Biol., 53, 1768–1782. [Google Scholar]
  • Sprules W.G. and Bowerman J.E., 1988. Omnivory and Food Chain Length in Zooplankton Food Webs. Ecology, 69, 418–426. [CrossRef] [Google Scholar]
  • StatSoft Inc., 2001. STATISTICA for Windows (Data Analysis Software System), Version 6. StatSoft, Tulsa, 1098 pp. [Google Scholar]
  • Strørm K.M., 1946. The ecological niche. Nature 157, 375. [Google Scholar]
  • Thielsh A., Brede N., Petrusek A., De Meesteer L. and Schewnk K., 2009. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia. Mol. Ecol., 18, 1616–1628. [Google Scholar]
  • Thompson R.M., Dunne J.A. and Woodward G., 2012. Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics. Freshwat. Biol., 57, 1329–1341. [Google Scholar]
  • Tilzer, Max M. 1973. “Diurnal periodicity in the phytoplankton assemblage of a high mountain lake.” Limnol. Oceanogr. 18, 15–30. [Google Scholar]
  • Tundisi J.G., 1999. Theoretical basis for reservoir management. In: Tundisi, J.G. and Straškraba, M. (eds.), Theoretical Reservoir Ecology and Its Applications s.l.: IIE. BAS, Backhuys Publishers, 505. [Google Scholar]
  • Vanderploeg H.A., Cavaletto J.F., Liebig J.R. and Gardner W.S., 1998. Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. J. Plank. Res., 20, 1581–1597. [CrossRef] [Google Scholar]
  • Visconti A. and Manca M., 2011. Seasonal changes in the δ13C and δ15N signatures of the Lago Maggiore pelagic food web. J. Limnol., 70, 263–271. [Google Scholar]
  • Visconti A., Volta P., Fadda A., Di Guardo A. and Manca M., 2013. Seasonality, littoral vs. pelagic carbon sources and stepwise 15N-enrichment of pelagic food web in a deep subalpine lake: the role of planktivorous fish. Can. J. Fish. Aquat. Sci., 71, 436–446. [Google Scholar]
  • Woodland R.J., Rodrìguez M.A., Magnan P., Glèmet H. and Cabana G., 2012. Incorporating temporally dynamic baselines in isotopic mixing models. Ecology, 93, 131–144. [CrossRef] [PubMed] [Google Scholar]
  • Zanden M., Vander J. and Rasmussen J.B., 1999. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecologv 80, 1395–1404. [Google Scholar]
  • Zohary T., Erez J., Gophen M., Bermanfrank I. and Stiller M., 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043. [CrossRef] [Google Scholar]
  • Zohary T. and Ostrovsky I., 2011. Ecologica impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Water, 1, 47–59. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.