Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 2, 2014
Page(s) 131 - 141
DOI https://doi.org/10.1051/limn/2014005
Published online 20 March 2014
  • Abrantes N., Nogueira A. and Goncalves F., 2009. Short-term dynamics of cladocerans in a eutrophic shallow lake during a shift in the phytoplankton dominance. Ann. Limnol. - Int. J. Lim., 45, 237–245. [Google Scholar]
  • Adámek Z., Sukop I., Rendón P.M. and Kouřil J., 2003. Food competition between 2+tench (Tinca tinca L.), common carp (Cyprinus carpio L.) and bigmouth buffalo (Ictiobus cyprinellus Val.) in pond polyculture. J. Appl. Ichthyol., 19, 165–169. [Google Scholar]
  • Alabaster J.S. and Lloyd R., 1980. Water Quality Criteria for Freshwater Fish, Butter-Worths, London, 297 p. [Google Scholar]
  • APHA 1998. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC. [Google Scholar]
  • Bailey S.A., Duggan I.C., Van Overdijk C.D.A., Johengen T.H., Reid D.F. and Macisaac H.J., 2004. Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshwat. Biol., 49, 286–295. [Google Scholar]
  • Biswas J.K., Rana S., Bhakta J.N. and Jana B.B., 2009. Bioturbation potential of Chironomid larvae for the sediment–water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecol. Eng., 35, 1444–1453. [CrossRef] [Google Scholar]
  • Blinn D.W. and Bailey P.C.E., 2001. Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia, 466, 231–244. [CrossRef] [Google Scholar]
  • Boronat L., Miracle M.R. and Armengol X., 2001. Cladoceran assemblages in a mineralization gradient. Hydrobiologia, 442, 75–88. [CrossRef] [Google Scholar]
  • Brock M.A., Nielsen D.L. and Crossie K., 2005. Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwat. Biol., 50, 1376–1390. [CrossRef] [Google Scholar]
  • Cáceres C. and Soluk D., 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia, 131, 402–408. [CrossRef] [PubMed] [Google Scholar]
  • Céréghino R., Ruggiero A., Marty P. and Angélibert S., 2008. Biodiversity and distribution patterns of freshwater invertebrates in farm ponds of a south-western French agricultural landscape. Hydrobiologia, 597, 43–51. [Google Scholar]
  • Chittapun S., Pholpunthin P. and Segers H., 2005. Restoration of tropical peat swamp rotifer communities after perturbation: an experimental study of recovery of rotifers from the resting egg bank. Hydrobiologia, 546, 281–289. [CrossRef] [Google Scholar]
  • Cho W.-S., Park Y.-S., Park H.-K., Kong H.Y. and Chon T.-S., 2011. Ecological informatics approach to screening of integrity metrics based on benthic macroinvertebrates in streams. Ann. Limnol. - Int. J. Lim., 47, 51–62. [CrossRef] [EDP Sciences] [Google Scholar]
  • De Meester L., Gomez A., Okamura B. and Schwenk K., 2002. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol., 23, 121–135. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dolédec S. and Chessel D., 1994. Co-inertia analysis: an alternative method for studying species–environment relationships. Freshwat. Biol., 31, 277–294. [Google Scholar]
  • Flosner D., 1972. Krebstiere, Crustacea, Kiemen und Blattfußer, Branchiopoda, Fischlause, Branchiura. Die tierwelt deutschlands, VEB Gustav Fischer Verlag, Jena, 501 p. [Google Scholar]
  • Fritz S.C., Cumming B.F., Gasse F. and Laird K.R., 1999. Diatoms as indicators of hydrologic and climatic changes in saline lakes. In: Stoermer E.F. and Smol J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, UK, 41–72. [Google Scholar]
  • Glöer P. and Meier-Brook C., 2003. Süswassermollusken, Deutscher Jugenbund für Naturbeoachung, Hamburg, 134 p. [Google Scholar]
  • Green J., 1993. Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia, 267, 249–256. [CrossRef] [Google Scholar]
  • Gyllström M. and Hansson L.A., 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci., 66, 274–295. [Google Scholar]
  • Hammer U.T., Shamess J. and Haynes R., 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia, 105, 1–26. [Google Scholar]
  • Hart B.T., Bailey P., Edwards R., Hortle K., James K., McMahon A., Meredith C. and Swadling K., 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia, 210, 105–144. [CrossRef] [Google Scholar]
  • Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U. and Zohary T., 1999. Biovolume calculation for pelagic and bentic microalgae. J. Phycol., 35, 403–424. [Google Scholar]
  • Horvath L., Tamas G. and Seagrave C., 2002. Carp and Pond Fish Culture, Blackwell Science, Oxford, 169 p. [CrossRef] [Google Scholar]
  • Huber-Pestalozzi G., Komarek J. and Fott B., 1983. Phytoplankton des süβwasser. Chlorophyceae, ordnung: Chlorococcales, E. Schweizerbartsche Verlagsbuchhandung, Stuttgart, 1044 p. [Google Scholar]
  • Hull A., 1997. The pond life project: a model for conservation and sustainability. In: Boothby J. (ed.), British Pond Landscape. Proceedings from the UK Conference of the Pond Life Project, Liverpool, 101–109. [Google Scholar]
  • Hynes H.B.N., 1966. The Biology of Polluted Water, Liverpool University Press, Liverpool, 202 p. [Google Scholar]
  • Jeffries M.J., 2002. Evidence for individualistic species assembly creating convergent predator: prey ratios among pond invertebrate communities. J. Anim. Ecol., 71, 173–184. [CrossRef] [Google Scholar]
  • Jenkins D.G. and Buikema A.L., 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecol. Monogr., 68, 421–443. [CrossRef] [Google Scholar]
  • Jurkiewicz-Karnkowska E., 2008. Aquatic mollusk communities in riparian sites of different size, hydrological connectivity and succession stage. Pol. J. Ecol., 56, 99–118. [Google Scholar]
  • Komárek J. and Anagnostidis K., 1998. Süβwasserflora von mitteleuropa. Cyanoprokaryota. Chroococcales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 548 p. [Google Scholar]
  • Komárek J. and Anagnostidis K., 2005. Süβwasserflora von mitteleuropa, Cyanoprokaryota. Oscillatoriales, Spektrum Akademischer Verlag, Heidelberg, Berlin, 759 p. [Google Scholar]
  • Koste W., 1978. Rotatoria. Die Radertiere Mitteleuropas, Überorderung Monogononta, Gerbruder Brontraeger, Berlin, 673 p. [Google Scholar]
  • Krammer J. and Lange-Bertalot H., 1986. Süβwasserflora von mitteleuropa. Bacillariophyceae. Naviculaceae, Gustav Fischer Verlag, Stuttgart, 876 p. [Google Scholar]
  • Krammer J. and Lange-Bertalot H., 1988. Süβwasserflora von mitteleuropa. Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellaceae, Gustav Fischer Verlag, Stuttgart, 596 p. [Google Scholar]
  • Kuczyńska-Kippen N. and Joniak T., 2010. The impact of water chemistry on zooplankton occurrence in two types (field versus forest) of small water bodies. Int. Rev. Hydrobiol., 95, 130–141. [CrossRef] [Google Scholar]
  • Louette G. and De Meester L., 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology, 86, 353–359. [CrossRef] [Google Scholar]
  • Mayer J., Dokulil M.T., Salbrechter B.M., Posch T., Pfister G., Kirschner A.K.T., Velimirov B., Steitz A. and Ulbricht T., 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia, 342/343, 165–174. [CrossRef] [Google Scholar]
  • McAleece N., 1997. Biodiversity Pro. The Natural History Museum, London. [Google Scholar]
  • Milstein A., 1992. Ecological aspects of fish species interactions in polyculture ponds. Hydrobiologia, 231, 177–186. [CrossRef] [Google Scholar]
  • Moller Pillot H.K.M., 2009. Chironomidae Larvae of the Netherlands and Adjacent Lowlands: Biology and Ecology of the Chironomini, KNNV Publishing, Zeist, 288 p. [Google Scholar]
  • Moog O., 2002. Fauna Aquatica Austriaca. A comprehensive species inventory of Austrian aquatic organisms with ecological notes, Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna. [Google Scholar]
  • Morduhai-Boltiviskoi B.D., 1954. Materialji po srednemu vesu vodnih bespozvonočnih dnepra. Trudi problemnih i tematičeskih sovešcanija zin. Problemy gidrobiologii vnutrennikh vod: Tr. problem. i temat. soveshch. M. Zool. in-t AN SSSR. Vyp., 2, 223–241. [Google Scholar]
  • Nielsen D.L., Brock M.A., Crosslé K., Harris K., Healey M. and Jarosinski I., 2003. The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshwat. Biol., 48, 2214–2223. [CrossRef] [Google Scholar]
  • Nielsen D.L., Smith D., Petrie R., 2012. Resting egg banks can facilitate recovery of zooplankton communities after extended exposure to saline conditions. Freshwat. Biol., 57, 1306–1314. [CrossRef] [Google Scholar]
  • North E.W. and Houde E.D., 2003. Linking ETM physics, zooplankton prey, and fish early-life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Mar. Ecol. Prog. Ser., 260, 219–236. [CrossRef] [Google Scholar]
  • Pechar L., 2000. Impact of long-term changes in fishery management on the trophic level water quality in Czech fish ponds. Fisheries Manage. Ecol., 7, 23–31. [Google Scholar]
  • Potužak J., Huda J. and Pechar L., 2007. Changes in fish production effectivity in eutrophic fishponds – impact of zooplankton structure. Aquacult. Int., 15, 201–210. [Google Scholar]
  • Rahman M., Kadowaki S., Balcombe S. and Wahab M., 2010. Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: direct observations in simulated ponds. Ecol. Res., 25, 303–309. [Google Scholar]
  • Remane A., 1934. Die brackwasserfauna. Verzeichnis der Veröffentlichungen Goldsteins, 36, 34–74. [Google Scholar]
  • Rettig J., Schuman L. and McCloskey J., 2006. Seasonal patterns of abundance: do zooplankton in small ponds do the same thing every spring-summer? Hydrobiologia, 556, 193–207. [CrossRef] [Google Scholar]
  • Reynolds C. S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 552 p. [Google Scholar]
  • Rozkošny R., 1980. Klič larev vodneho hmyzu, Ceskoslovenska Akademie Ved, Praha, Czech Republic, 521 p. [Google Scholar]
  • Ruggiero A., Céréghino R., Figuerola J., Marty P. and Angélibert S., 2008. Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. C. R. Biol., 331, 298–308. [Google Scholar]
  • Simpson E.H., 1949. Measurement of diversity. Nature, 163, 688. [CrossRef] [Google Scholar]
  • Smayda T.J., 1978. From phytoplankters to biomass. In: Sournia A. (ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology 6, UNESCO, Paris, 273–279. [Google Scholar]
  • Stewart A.J., 2001. A simple stream monitoring technique based on measurements of semi-conservative properties of water. J. Environ. Manage., 27, 37–46. [Google Scholar]
  • Ter Heerdt G. and Hootsmans M., 2007. Why biomanipulation can be effective in peaty lakes. Hydrobiologia, 584, 305–316. [CrossRef] [Google Scholar]
  • Thioulouse J., Chessel D., Dole'Dec S. and Olivier J.M., 1997. Ade-4: a multivariate analysis and graphical display software. Stat. Comput., 7, 75–83. [CrossRef] [Google Scholar]
  • Thompson P.L. and Shurin J.B., 2012. Regional zooplankton biodiversity provides limited buffering of pond ecosystems against climate change. J. Anim. Ecol., 81, 251–259. [CrossRef] [PubMed] [Google Scholar]
  • Vallenduuk H.J. and Moller Pillot H.K.M., 2007. Chironomidae Larvae of the Netherlands and Adjacent Lowlands: General ecology and Tanypodinae, KNNV Publishing, Zeist, 144 p. [Google Scholar]
  • Van Der Vlugt J.C., Walker P.A., Does J. and Raat A.J.P., 1992. Fisheries management as an additional lake restoration measure: biomanipulation scaling-up problems. Hydrobiologia, 233, 213–224. [CrossRef] [Google Scholar]
  • Waterkeyn A., Vanschoenwinkel B., Vercampt H. and Grillas P., 2011. Long-term effects of salinity and disturbance regime on active and dormant crustacean communities. Limnol. Oceanogr., 56, 1008–1022. [CrossRef] [Google Scholar]
  • Wegl R. 1983. Index für die Limnosaprobitat. Wass. Abwass., 26, 1–175. [Google Scholar]
  • Wesselingh F.P., Cadée G.C. and Renema W., 1999. Flying high: on the airborne dispersal of aquatic organisms as illustrated by the distribution histories of the gastropod genera Tryonia and Planorbarius. Neth. J. Geosci., 78, 165–174. [Google Scholar]
  • Williams P., Biggs J., Corfield A., Fox G., Walker D. and Whitfield M., 1997. Designing new ponds for wildlife. Br. Wildl., 8, 137–150. [Google Scholar]
  • Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P. and Sear D., 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv., 115, 329–341. [Google Scholar]
  • Wood P.J., Greenwood M.T. and Agnew M.D., 2003. Pond biodiversity and habitat loss in the UK. Area, 35, 206–216. [CrossRef] [Google Scholar]
  • Yang Y.F., Huang X.F., Liu J.K. and Jiao N.Z., 2005. Effects of fish stocking on the zooplankton community structure in a shallow lake in China. Fisheries Manage. Ecol., 12, 81–89. [CrossRef] [Google Scholar]
  • Zelinka M. and Marvan P., 1961. Zur Prazisierung der biologischen Klassifikation der Reinheit flisender Gewasser. Arch. Hydrobiol., 57, 389–407. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.