Free Access
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 4, 2012
Page(s) 355 - 362
Published online 29 October 2012
  • Babik W. and Rafiński J., 2001. Amphibian breeding site characteristics in the Western Carpathians, Poland. Herpetol. J., 11, 41–51. [Google Scholar]
  • Beebee T.J.C. and Griffiths R.A., 2005. The amphibian decline crisis: a watershed for conservation biology? Biol. Conserv., 25, 271–285. [CrossRef] [Google Scholar]
  • Birks H.J.B., Jones V.J. and Rose N.L., 2004. Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments – synthesis and general conclusions. J. Paleolimnol., 31, 531–546. [Google Scholar]
  • Bosch J. and Martinez-Solano I., 2003. Factors influencing occupancy of breeding ponds in a montane amphibian assemblage. J. Herpetol., 37, 410–413. [Google Scholar]
  • Burnham K.P. and Anderson D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach (2nd edn.), Springer-Verlag, New York, 485 p. [Google Scholar]
  • Burton E.C., Gray M.J., Schmutzer A.C. and Miller D.L., 2009. Differential responses of postmetamorphic amphibians to cattle grazing in wetlands. J. Wildlife Manage., 73, 269–277. [CrossRef] [Google Scholar]
  • Ćirović R., Vukov T.D., Radović D., Džukić G. and Kalezić M.L., 2008. Distribution patterns and environmental determinants of European newts in the Montenegrin karst area. Biologia, 63, 745–752. [CrossRef] [Google Scholar]
  • Cogălniceanu D. and Hartel T., 2005. Frost induced mortality in a high altitude population of Rana temporaria. Froglog, 72, 3–4. [Google Scholar]
  • Cogălniceanu D., Ghira I. and Ardeleanu A., 2001. Spatial distribution of herpetofauna in the Retezat Mountains National Park, Romania. Biota, 2, 9–16. [Google Scholar]
  • Cogălniceanu D., Hartel T. and Plăiaşu R., 2006. Establishing an amphibian monitoring program in two protected area of Romania. In: Vences M., Köhler J., Ziegler T. and Böhme W. (eds.), Herpetologia Bonnensis II, Proceedings of the 13th Congress of the Societas Europea Herpetologica. SEH, Bonn, 31–34. [Google Scholar]
  • Curtis C., Botev I., Camarero L., Catalan J., Cogălniceanu D., Hughes M., Kernan M., Kopacek J., Korhola A., Mosello R., Psenner R., Stuchlik E., Veronesi M. and Wright R., 2005. Acidification in European mountain lake districts: a regional assessment of critical load exceedance. Aquat. Sci., 67, 237–251. [Google Scholar]
  • Decei P., 1981. Lacuri de munte. Drumeţie şi pescuit. [Mountain Lakes. Trekking and Fishing]. Editura Sport-Turism, Bucharest, Romania. [Google Scholar]
  • Denoël M. and Joly P., 2000. Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia, Caudata). Proc. R. Soc. Lond. B, 267, 1481–1485. [CrossRef] [Google Scholar]
  • Elmberg J. and Lundberg P., 1991. Intraspecific variation in calling, time allocation and energy reserves in breeding male common frogs Rana temporaria. Ann. Zool. Fenn., 28, 23–29. [Google Scholar]
  • ESRI, 2009a. An Overview of Spatial Analyst, Environmental Systems Research Institute, Redlands, CA. Available online at: [Google Scholar]
  • ESRI, 2009b. An Overview of the Solar Radiation Tools, Environmental Systems Research Institute, Redlands, CA. Available online at: [Google Scholar]
  • Fărcaş I. and Sorocovschi V., 1992. The climate of the Retezat Mountains. In: Popovici I. (ed.), The Retezat National Park, Ecological Studies, West Side Computers, Braşov, 13–20. [Google Scholar]
  • Fjellheim A., Raddum G.G., Vandvik V., Cogălniceanu D., Boggero A., Brancelj A., Galas J., Sporka F., Vidinova Y., Bitusik P., Dumnicka E., Gâldean N., Kownacki A., Krno I., Preda E., Rîşnoveanu G. and Stuchlik E., 2009. Diversity and distribution patterns of benthic invertebrates along alpine gradients. A study of remote European freshwater lakes. Adv. Limnol., 62, 159–176. [Google Scholar]
  • Fu P. and Rich P.M., 2002. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agr., 37, 25–35. [Google Scholar]
  • Funk W.C., Blouin M.S., Corn P.S., Maxell B.A., Pilliod D.S., Amish S. and Allendorf F.W., 2005. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol. Ecol., 14, 483–496. [Google Scholar]
  • Glos J., Grafe U.T., Rödel M.O. and Linsenmair K.E., 2003. Geographic variation in pH tolerance of two populations of the European common frog, Rana temporaria. Copeia, 3, 650–656. [CrossRef] [Google Scholar]
  • Grözinger F., Wertz A., Thein J., Feldhaar H. and Rödel M.O., 2012. Environmental factors fail to explain oviposition site use in the European common frog. To be published in J. Zool. [PubMed] [Google Scholar]
  • Harrison S. and Taylor A.D., 1997. Empirical evidence for metapopulation dynamics. In: Hanski I. and Gilpin M.E. (eds.), Metapopulation Biology: Ecology, Genetics, and Evolution, Academic Press, San Diego, CA, 27–42. [CrossRef] [Google Scholar]
  • Jarvis A., Reuter H.I., Nelson A. and Guevara E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). Available online at: [Google Scholar]
  • Koining K.A., Schmidt R., Sommaruga-Wögrath S., Tessadri R. and Psenner R., 1998. Climate change as the primary cause for pH shifts in a high alpine lake. Water Air Soil Pollut., 104, 167–180. [Google Scholar]
  • Kovar R., Brabec M., Vita R. and Bocek R., 2009. Spring migration distances of some Central European amphibian species. Amphibia-Reptilia, 30, 367–378. [CrossRef] [Google Scholar]
  • Kuzmin S., Tuniyev V.I.B., Beebee T., Andreone F., Nyström P., Anthony B., Schmidt B., Ogrodowczyk A., Ogielska M., Bosch J., Miaud C., Loman J., Cogălniceanu D., Kovács T. and Kiss I., 2009. Rana temporaria. IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2 [Google Scholar]
  • Lindgren B. and Laurila A., 2010. Are high-latitude individuals superior competitors? A test with Rana temporaria tadpoles. Evol. Ecol., 24, 115–131. [Google Scholar]
  • Loman J., 1999. Early metamorphosis in common frog Rana temporaria at risk of drying: an experimental demonstration. Amphibia-Reptilia, 20, 421–430. [Google Scholar]
  • Mazerolle M.J., 2009. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c), version 1.06. [Google Scholar]
  • Merilä J., Laurila A., Timenes L.A., Rasanen K. and Pahkala M., 2000. Plasticity in age and size at metamorphosis in Rana temporaria – comparison of high and low latitude populations. Ecography, 23, 457–465. [CrossRef] [Google Scholar]
  • Miaud C. and Merilä J., 2001. Local adaptation or environmental induction? Causes of population differentiation in alpine amphibians. Biota, 2, 31–50. [Google Scholar]
  • Miaud C., Guyetant R. and Elmberg J., 1999. Variations in life-history traits in the common frog Rana temporaria (Amphibia: Anura): a literature review and new data from the French Alps. J. Zool., 249, 61–73. [Google Scholar]
  • Miaud C., Guyetant R. and Faber H., 2000. Age, size, and growth of the alpine newt, Triturus alpestris (Urodela: Salamandridae) at high altitude and a review of life-history trait variation throughout its range. Herpetologica, 56, 135–144. [Google Scholar]
  • Pişotă I., 1971. Lacurile glaciare din Carpaţii Meridionali. Studiu hidrologic. [Glacial Lakes from the Southern Carpathians. Hydrological Study]. Editura Academiei, Bucharest, Romania. [Google Scholar]
  • Plăiaşu R., Băncilă R.I., Samoilă C. and Cogălniceanu D., 2010. Factors influencing the breeding habitat use by amphibians in the alpine area of the Retezat National Park (Romania). Trav. Mus. Nat. d'Hist. Nat. “Gr. Antipa”, 53, 469–478. [Google Scholar]
  • Psenner R. and Schmidt R., 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature, 356, 781–783. [CrossRef] [Google Scholar]
  • Pyke C.R. and Marty R.J., 2005. Cattle grazing mediates climate change impacts on ephemeral wetlands. Conserv. Biol., 19, 1619–1625. [Google Scholar]
  • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Vienna. Available online at: [Google Scholar]
  • Schmutzer A.C., Gray M.J., Burton E.C. and Miller D.L., 2008. Impacts of cattle on amphibian larvae and the aquatic environment. Freshwater Biol., 53, 2613–2625. [Google Scholar]
  • Schreiber W. and Sorocovschi V., 1992. The Retezat Mountains. Physico-geographic data. In: Popovici I. (ed.), The Retezat National Park. Ecological Studies, West Side Computers, Braşov, 8–12. [Google Scholar]
  • Sommer S. and Pearman P.B., 2003. Quantitative genetic analysis of larval life history traits in two alpine populations of Rana temporaria. Genetica, 118, 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Straskrabova V., Cogălniceanu D., Nedoma J., Parpală L., Postolache C., Tudorancea C., Vădineanu A., Vâlcu C. and Zinevici V., 2006. Bacteria and pelagic food webs in pristine mountain lakes (Retezat, Romania). Transylv. Rev. Syst. Ecol. Res., 3, 1–10. [Google Scholar]
  • Tattersall G.J. and Ultsch G.R., 2008. Physiological ecology of aquatic overwintering in Ranid frogs. Biol. Rev., 83, 119–140. [Google Scholar]
  • Urdea P., 2000. Munţii Retezat. Studiu Geomorfologic. [The Retezat Mountains. Geomorphological Study]. Editura Academiei Române, Bucharest, Romania. [Google Scholar]
  • Van Buskirk J., 2005. Local and landscape influence on amphibian occurrence and abundance. Ecology, 86, 1936–1947. [CrossRef] [Google Scholar]
  • Veith M., Vences M., Vieites D.R., Nieto-Roman S. and Palanca A., 2002. Genetic differentiation and population structure within the Spanish common frogs (Rana temporaria complex: Ranidae, Amphibia). Folia Zool., 51, 307–318. [Google Scholar]
  • Vences M., Grossenbacher K., Puente M., Palanca A. and Vieites D.R., 2003. The Cambalès fairy tale: elevational limits of Rana temporaria (Amphibia: Ranidae) and other European amphibians revisited. Folia Zool., 52, 189–202. [Google Scholar]
  • Vieites D.R., Nieto-Román S., Barluenga M., Palanca A., Vences M. and Meyer A., 2004. Post-mating clutch piracy in an amphibian. Nature, 431, 305–308. [CrossRef] [PubMed] [Google Scholar]
  • Wolfe A.P., Baron J.S. and Cornett R.J., 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J. Paleolimnol., 25, 1–7. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.