Free Access
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 3, 2012
Page(s) 337 - 347
Published online 18 September 2012
  • Babica P., Bláha L. and Maršálek B., 2006. Exploring the natural role of microcystins – A review of effects on photoautotrophic organisms. J. Phycol., 42, 9–20. [Google Scholar]
  • Barbosa I.R., Nogueira A.J.A. and Soares A., 2008. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna. Ecotoxicol. Environ. Safe., 71, 757–764. [CrossRef] [Google Scholar]
  • Brett M.T. and Goldman C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 7723–7726. [Google Scholar]
  • Briand J.F., Robillot C., Quiblier-Lloberas C. and Bernard C., 2002. A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies. Arch. Hydrobiol., 153, 605–622. [Google Scholar]
  • Burkhardt-Holm P., 2010. Endocrine disruptors and water quality: a state-of-the-art review. Int. J. Water. Resour. D, 26, 477–493. [Google Scholar]
  • Burns C.W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr., 13, 675–678. [CrossRef] [Google Scholar]
  • Buryskova B., Hilscherova K., Babica P., Vrskova D., Marsalek B. and Blaha L., 2006. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins. Aquat. Toxicol., 80, 346–354. [CrossRef] [PubMed] [Google Scholar]
  • Carmichael W.W., 1992. Cyanobacteria secondary metabolites – the cyanotoxins. J. Appl. Bacteriol., 72, 445–459. [CrossRef] [PubMed] [Google Scholar]
  • Caswell H., 1989. Matrix Population Models, Sinauer Associates, Inc., Sunderland, Massachusetts, 328 p. [Google Scholar]
  • Catherine A., Quiblier C., Yepremian C., Got P., Groleau A., Vincon-Leite B., Bernard C. and Troussellier M., 2008. Collapse of a Planktothrix agardhii perennial bloom and microcystin dynamics in response to reduced phosphate concentrations in a temperate lake. FEMS Microbiol. Ecol., 65, 61–73. [Google Scholar]
  • Codd G.A., Lindsay J., Young F.M., Morrison L.F. and Metcalf J.S., 2005. Harmful cyanobacteria. From mass mortalities to management measures. In: Huisman J., Matthijs H.C.P. and Visser P.M. (eds.), Harmful Cyanobacteria, Springer, 1–23. [CrossRef] [Google Scholar]
  • DeMott W., Zhang Q. and Carmichael W., 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr., 36, 1346–1357. [CrossRef] [Google Scholar]
  • Ferrão-Filho A., Azevedo S. and DeMott W., 2000. Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshwater Biol., 45, 1–19. [CrossRef] [Google Scholar]
  • Ferrière R., Sarrazin F., Legendre S. and Baron J.-P., 1996. Matrix population models applied to viability analysis and conservation: theory and practice using the ULM software. Acta Oecol., 17, 629–656. [Google Scholar]
  • Foy R.H., 1980. The influence of surface to volume ratio on the growth-rates of planktonic blue-green-algae. Br. Phycol. J., 15, 279–289. [CrossRef] [Google Scholar]
  • Ghadouani A., Pinel-Alloul B. and Prepas E.E., 2006. Could increased cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Can. J. Fish. Aquat. Sci., 63, 2308–2317. [CrossRef] [Google Scholar]
  • Gross E.M., 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant. Sci., 22, 313–339. [Google Scholar]
  • Hamlaoui S., Couté A., Lacroix G. and Lescher-Moutoué F., 1998. Nutrient and fish effects on the morphology of the Dinoflagellate. C. R. Acad. Sci. Paris, Sciences de la Vie, 321, 39–45. [CrossRef] [Google Scholar]
  • Hansson L.A. and Carpenter S., 1993. Relative importance of nutrient availability and food chain for size and community composition in phytoplankton. Oikos, 67, 257–263. [CrossRef] [Google Scholar]
  • Hansson L.A., Gustafsson S., Rengefors K. and Bomark L., 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biol., 52, 1290–1301. [Google Scholar]
  • Jang M.-H., Ha K., Joo G.-J. and Takamura N., 2003. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol., 48, 1540. [CrossRef] [Google Scholar]
  • Jang M.H., Ha K. and Takamura N., 2008. Microcystin production by Microcystis aeruginosa exposed to different stages of herbivorous zooplankton. Toxicon, 51, 882–889. [CrossRef] [PubMed] [Google Scholar]
  • Jungmann D., 1992. Toxic compounds isolated from microcystis Pcc7806 that are more active against daphnia than 2 microcystins. Limnol. Oceanogr., 37, 1777–1783. [CrossRef] [Google Scholar]
  • Keil C., Forchert A., Fastner J., Szewzyk U., Rotard W., Chorus I. and Kratke R., 2002. Toxicity and microcystin content of extracts from a Planktothrix bloom and two laboratory strains. Water Res., 36, 2133–2139. [CrossRef] [PubMed] [Google Scholar]
  • Kilham S.S., Kreeger D.A., Lynn S.G., Goulden C.E. and Herrera L., 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 377, 147–159. [Google Scholar]
  • Kim Y., Jung J., Oh S. and Choi K., 2008. Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes. J. Environ. Sci. Health B, 43, 56–64. [Google Scholar]
  • Kirk K. and Gilbert J.J., 1992. Variation in herbivore response to chemical defenses – zooplankton foraging on toxic cyanobacteria. Ecology, 73, 2208–2217. [CrossRef] [Google Scholar]
  • Kotai J., 1972. Instructions for preparation of modified nutrient solution Z8 for algae, Publication B.11 69, Norwegian Institute for Water Research, Oslo, 1–5. [Google Scholar]
  • Kurmayer R., 2001. Competitive ability of Daphnia under dominance of non-toxic filamentous cyanobacteria. Hydrobiologia, 442, 279–289. [CrossRef] [Google Scholar]
  • Kurmayer R. and Jüttner F., 1999. Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J. Plankton. Res., 21, 659–683. [CrossRef] [Google Scholar]
  • Leflaive J. and Ten-Hage L., 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol., 52, 199–214. [Google Scholar]
  • Legendre S. and Clobert J., 1995. ULM, a software for conservation and evolutionary biologists. J. Appl. Stat., 22, 817–834. [CrossRef] [Google Scholar]
  • Lürling M., 2003a. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann. Limnol. ‐ Int. J. Lim., 39, 85–101. [Google Scholar]
  • Lürling M., 2003b. Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol. Oceanogr., 48, 2214–2220. [CrossRef] [Google Scholar]
  • Lürling M. and Van Donk E., 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr., 42, 783–788. [Google Scholar]
  • Lyck S., 2004. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. J. Plankton Res., 26, 727–736. [Google Scholar]
  • Oziol L. and Bouaïcha N., 2010. First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. J. Hazard. Mater., 174, 610–615. [CrossRef] [PubMed] [Google Scholar]
  • Park H.D., Iwami C., Watanabe M.F., Harada K., Okino T. and Hayashi H., 1998. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual., 13, 61–72. [CrossRef] [Google Scholar]
  • Pawlik-Skowronska B., Pirszel J. and Kornijow R., 2008. Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. ‐ Int. J. Lim., 44, 145–150. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rohrlack T. and Hyenstrand P., 2007. Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia, 46, 277–283. [CrossRef] [Google Scholar]
  • Rohrlack T., Dittmann E., Henning M., Borner T. and Kohl J.G., 1999a. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol., 65, 737–739. [Google Scholar]
  • Rohrlack T., Henning M. and Kohl J.G., 1999b. Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata's ingestion rate. J. Plankton Res., 21, 1489–1500. [CrossRef] [Google Scholar]
  • Rohrlack T., Christoffersen K., Kaebernick M. and Neilan B.A., 2004. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl. Environ. Microbiol., 70, 5047–5050. [CrossRef] [PubMed] [Google Scholar]
  • Schatz D., Keren Y., Vardi A., Sukenik A., Carmeli S., Boerner T., Dittmann E. and Kaplan A., 2007. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol., 9, 965–970. [CrossRef] [PubMed] [Google Scholar]
  • Sivonen K. and Jones G., 1999. Cyanobacterial toxins. In: Chorus I. and Bartram J. (eds.), Toxic Cyanobacteria in Water: A Guide to Public Health. Significance, Monitoring and Management, Published on Behalf of the World Health Organization by Spon/Chapman & Hall, London, 41–111. [Google Scholar]
  • Tillmann U. and John U., 2002. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar. Ecol. Prog. Ser., 230, 47–58. [CrossRef] [Google Scholar]
  • Tillmanns A.R., Wilson A.E., Pick F.R. and Sarnelle O., 2008. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundam. Appl. Limnol., 171, 285–295. [Google Scholar]
  • Turner J.T. and Tester P.A., 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr., 42, 1203–1214. [CrossRef] [Google Scholar]
  • Vanni M.J., 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology, 68, 624–635. [CrossRef] [Google Scholar]
  • Vanni M.J. and Findlay D.L., 1990. Trophic cascades and phytoplankton community structure. Ecology, 71, 921–937. [CrossRef] [Google Scholar]
  • Vasconcelos V.M. and Pereira E., 2001. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res., 35, 1354–1357. [CrossRef] [PubMed] [Google Scholar]
  • Webster K.E. and Peters R.H., 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr., 23, 1238–1245. [CrossRef] [Google Scholar]
  • Wiegand C. and Pflugmacher S., 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharm., 203, 201–218. [Google Scholar]
  • Wilson A.E. and Hay M.E., 2007. A direct test of cyanobacterial chemical defense: variable effects of microcystin-treated food on two Daphnia pulicaria clones. Limnol. Oceanogr., 52, 1467–1479. [CrossRef] [Google Scholar]
  • Wilson A.E., Sarnelle O. and Tillmanns A.R., 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol. Oceanogr., 51, 1915–1924. [CrossRef] [Google Scholar]
  • Yéprémian C., Gugger M.F., Briand E., Catherine A., Berger C., Quiblier C. and Bernard C., 2007. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res., 41, 4446–4456. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.