Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 3, 2012
Page(s) 337 - 347
DOI https://doi.org/10.1051/limn/2012023
Published online 18 September 2012
  • Babica P., Bláha L. and Maršálek B., 2006. Exploring the natural role of microcystins – A review of effects on photoautotrophic organisms. J. Phycol., 42, 9–20. [CrossRef]
  • Barbosa I.R., Nogueira A.J.A. and Soares A., 2008. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna. Ecotoxicol. Environ. Safe., 71, 757–764. [CrossRef]
  • Brett M.T. and Goldman C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 7723–7726. [CrossRef]
  • Briand J.F., Robillot C., Quiblier-Lloberas C. and Bernard C., 2002. A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies. Arch. Hydrobiol., 153, 605–622.
  • Burkhardt-Holm P., 2010. Endocrine disruptors and water quality: a state-of-the-art review. Int. J. Water. Resour. D, 26, 477–493. [CrossRef]
  • Burns C.W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr., 13, 675–678. [CrossRef]
  • Buryskova B., Hilscherova K., Babica P., Vrskova D., Marsalek B. and Blaha L., 2006. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins. Aquat. Toxicol., 80, 346–354. [CrossRef] [PubMed]
  • Carmichael W.W., 1992. Cyanobacteria secondary metabolites – the cyanotoxins. J. Appl. Bacteriol., 72, 445–459. [CrossRef] [PubMed]
  • Caswell H., 1989. Matrix Population Models, Sinauer Associates, Inc., Sunderland, Massachusetts, 328 p.
  • Catherine A., Quiblier C., Yepremian C., Got P., Groleau A., Vincon-Leite B., Bernard C. and Troussellier M., 2008. Collapse of a Planktothrix agardhii perennial bloom and microcystin dynamics in response to reduced phosphate concentrations in a temperate lake. FEMS Microbiol. Ecol., 65, 61–73. [CrossRef] [PubMed]
  • Codd G.A., Lindsay J., Young F.M., Morrison L.F. and Metcalf J.S., 2005. Harmful cyanobacteria. From mass mortalities to management measures. In: Huisman J., Matthijs H.C.P. and Visser P.M. (eds.), Harmful Cyanobacteria, Springer, 1–23. [CrossRef]
  • DeMott W., Zhang Q. and Carmichael W., 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr., 36, 1346–1357. [CrossRef]
  • Ferrão-Filho A., Azevedo S. and DeMott W., 2000. Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshwater Biol., 45, 1–19. [CrossRef]
  • Ferrière R., Sarrazin F., Legendre S. and Baron J.-P., 1996. Matrix population models applied to viability analysis and conservation: theory and practice using the ULM software. Acta Oecol., 17, 629–656.
  • Foy R.H., 1980. The influence of surface to volume ratio on the growth-rates of planktonic blue-green-algae. Br. Phycol. J., 15, 279–289. [CrossRef]
  • Ghadouani A., Pinel-Alloul B. and Prepas E.E., 2006. Could increased cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Can. J. Fish. Aquat. Sci., 63, 2308–2317. [CrossRef]
  • Gross E.M., 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant. Sci., 22, 313–339. [CrossRef]
  • Hamlaoui S., Couté A., Lacroix G. and Lescher-Moutoué F., 1998. Nutrient and fish effects on the morphology of the Dinoflagellate. C. R. Acad. Sci. Paris, Sciences de la Vie, 321, 39–45. [CrossRef]
  • Hansson L.A. and Carpenter S., 1993. Relative importance of nutrient availability and food chain for size and community composition in phytoplankton. Oikos, 67, 257–263. [CrossRef]
  • Hansson L.A., Gustafsson S., Rengefors K. and Bomark L., 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biol., 52, 1290–1301. [CrossRef]
  • Jang M.-H., Ha K., Joo G.-J. and Takamura N., 2003. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol., 48, 1540. [CrossRef]
  • Jang M.H., Ha K. and Takamura N., 2008. Microcystin production by Microcystis aeruginosa exposed to different stages of herbivorous zooplankton. Toxicon, 51, 882–889. [CrossRef] [PubMed]
  • Jungmann D., 1992. Toxic compounds isolated from microcystis Pcc7806 that are more active against daphnia than 2 microcystins. Limnol. Oceanogr., 37, 1777–1783. [CrossRef]
  • Keil C., Forchert A., Fastner J., Szewzyk U., Rotard W., Chorus I. and Kratke R., 2002. Toxicity and microcystin content of extracts from a Planktothrix bloom and two laboratory strains. Water Res., 36, 2133–2139. [CrossRef] [PubMed]
  • Kilham S.S., Kreeger D.A., Lynn S.G., Goulden C.E. and Herrera L., 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 377, 147–159. [CrossRef]
  • Kim Y., Jung J., Oh S. and Choi K., 2008. Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes. J. Environ. Sci. Health B, 43, 56–64. [CrossRef] [PubMed]
  • Kirk K. and Gilbert J.J., 1992. Variation in herbivore response to chemical defenses – zooplankton foraging on toxic cyanobacteria. Ecology, 73, 2208–2217. [CrossRef]
  • Kotai J., 1972. Instructions for preparation of modified nutrient solution Z8 for algae, Publication B.11 69, Norwegian Institute for Water Research, Oslo, 1–5.
  • Kurmayer R., 2001. Competitive ability of Daphnia under dominance of non-toxic filamentous cyanobacteria. Hydrobiologia, 442, 279–289. [CrossRef]
  • Kurmayer R. and Jüttner F., 1999. Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J. Plankton. Res., 21, 659–683. [CrossRef]
  • Leflaive J. and Ten-Hage L., 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol., 52, 199–214. [CrossRef]
  • Legendre S. and Clobert J., 1995. ULM, a software for conservation and evolutionary biologists. J. Appl. Stat., 22, 817–834. [CrossRef]
  • Lürling M., 2003a. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann. Limnol. ‐ Int. J. Lim., 39, 85–101. [CrossRef] [EDP Sciences]
  • Lürling M., 2003b. Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol. Oceanogr., 48, 2214–2220. [CrossRef]
  • Lürling M. and Van Donk E., 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr., 42, 783–788. [CrossRef]
  • Lyck S., 2004. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. J. Plankton Res., 26, 727–736. [CrossRef]
  • Oziol L. and Bouaïcha N., 2010. First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. J. Hazard. Mater., 174, 610–615. [CrossRef] [PubMed]
  • Park H.D., Iwami C., Watanabe M.F., Harada K., Okino T. and Hayashi H., 1998. Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual., 13, 61–72. [CrossRef]
  • Pawlik-Skowronska B., Pirszel J. and Kornijow R., 2008. Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. ‐ Int. J. Lim., 44, 145–150. [CrossRef] [EDP Sciences]
  • Rohrlack T. and Hyenstrand P., 2007. Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia, 46, 277–283. [CrossRef]
  • Rohrlack T., Dittmann E., Henning M., Borner T. and Kohl J.G., 1999a. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol., 65, 737–739.
  • Rohrlack T., Henning M. and Kohl J.G., 1999b. Mechanisms of the inhibitory effect of the cyanobacterium Microcystis aeruginosa on Daphnia galeata's ingestion rate. J. Plankton Res., 21, 1489–1500. [CrossRef]
  • Rohrlack T., Christoffersen K., Kaebernick M. and Neilan B.A., 2004. Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl. Environ. Microbiol., 70, 5047–5050. [CrossRef] [PubMed]
  • Schatz D., Keren Y., Vardi A., Sukenik A., Carmeli S., Boerner T., Dittmann E. and Kaplan A., 2007. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol., 9, 965–970. [CrossRef] [PubMed]
  • Sivonen K. and Jones G., 1999. Cyanobacterial toxins. In: Chorus I. and Bartram J. (eds.), Toxic Cyanobacteria in Water: A Guide to Public Health. Significance, Monitoring and Management, Published on Behalf of the World Health Organization by Spon/Chapman & Hall, London, 41–111.
  • Tillmann U. and John U., 2002. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar. Ecol. Prog. Ser., 230, 47–58. [CrossRef]
  • Tillmanns A.R., Wilson A.E., Pick F.R. and Sarnelle O., 2008. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundam. Appl. Limnol., 171, 285–295. [CrossRef]
  • Turner J.T. and Tester P.A., 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr., 42, 1203–1214. [CrossRef]
  • Vanni M.J., 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology, 68, 624–635. [CrossRef]
  • Vanni M.J. and Findlay D.L., 1990. Trophic cascades and phytoplankton community structure. Ecology, 71, 921–937. [CrossRef]
  • Vasconcelos V.M. and Pereira E., 2001. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res., 35, 1354–1357. [CrossRef] [PubMed]
  • Webster K.E. and Peters R.H., 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr., 23, 1238–1245. [CrossRef]
  • Wiegand C. and Pflugmacher S., 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharm., 203, 201–218. [CrossRef]
  • Wilson A.E. and Hay M.E., 2007. A direct test of cyanobacterial chemical defense: variable effects of microcystin-treated food on two Daphnia pulicaria clones. Limnol. Oceanogr., 52, 1467–1479. [CrossRef]
  • Wilson A.E., Sarnelle O. and Tillmanns A.R., 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol. Oceanogr., 51, 1915–1924. [CrossRef]
  • Yéprémian C., Gugger M.F., Briand E., Catherine A., Berger C., Quiblier C. and Bernard C., 2007. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res., 41, 4446–4456. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.