Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 3, 2012
Page(s) 323 - 336
DOI https://doi.org/10.1051/limn/2012022
Published online 06 August 2012
  • Augustin H., Foissner W. and Adam H., 1984. An improved pyridinated silver carbonate method which need few specimens and yields permanent slides of impregnation ciliates (Protozoa, Ciliophora). Mikroskopie, 41, 134–137. [Google Scholar]
  • Bałaga K., 2007. Transformation of lake ecosystem into peat bog and vegetation history based on Durne Bagno mire (Lublin Polesie, E Poland). Geochronomet., 29, 23–47. [CrossRef] [Google Scholar]
  • Bamforth S.S., Wall D.H. and Virginia R., 2001. Distribution and diversity of soil protozoa in the McMurdo Dry Valleys of Antarctica. Polar Biol., 28, 756–762. [CrossRef] [Google Scholar]
  • Bateman L. and Davis C., 1980. Rotifera in hummock-hollow formation in poor (mesotrophic) fen in Newfoundland. Int. Rev. Hydrobiol., 65, 127–153. [CrossRef] [Google Scholar]
  • Berzins B. and Pejler B., 1987. Rotifer occurrence in relation to pH. Hydrobiologia, 147, 107–116. [CrossRef] [Google Scholar]
  • Bielańska-Grajner I., Cudak A. and Mieczan T., 2011. Epiphytic rotifer abundance and diversity in moss patches in bogs and fens in Polesie National Park (Eastern Poland). Int. Rev. Hydrobiol., 96, 29–38. [CrossRef] [Google Scholar]
  • Bobrov A.B., Charman D.J. and Warner B.G., 1999. Ecology of Testate Amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protistologica., 150, 125–136. [CrossRef] [PubMed] [Google Scholar]
  • Borcard D. and Vaucher von Ballmoos C., 1997. Oribatid mites (Acari, Oribatida) of a primary peat bog-palustre transition in the Swiss Jura mountains. Ecoscience, 4, 470–479. [Google Scholar]
  • Charman, D.J., Hendon D. and Woodland, W., 2000. The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Quaternary Research Association, Technical Guide, UK, London, 147 p. [Google Scholar]
  • Clarke K.J., 2003. Guide to the Identification of Soil Protozoa – Testate Amoebae. Freshwater Biological Association, UK, Cumbria, 40 p. [Google Scholar]
  • Di Castri F., Hansen A.J. and Holland M.M., 1988. A new look at ecotones: emerging international projects on landscape boundaries. Biol. Int., 17, 1–163. [Google Scholar]
  • Finlay B.J. 1980. Temporal and vertical distribution of ciliophoran communities in the benthos of a small eutrophic loch with particular reference to the redox profile. Freshwater Biol., 10, 15–34. [CrossRef] [Google Scholar]
  • Foissner W. and Berger H., 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshwater Biol., 35, 375–470. [Google Scholar]
  • Foissner W., Berger H. and Kohmann F., 1994. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Hymenostomatida, Prostomatida, Nassulida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 548 p. [Google Scholar]
  • Foissner W., Berger H. and Schaumburg J., 1999. Identification and Ecology of Limnetic Plankton Ciliates. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 800 p. [Google Scholar]
  • Gilbert D. and Mitchell E.A.D., 2006. Microbial diversity in Sphagnum peatlands. In: Martini I.P., Martinez Cortizas A. and Chesworth W. (eds.), Peatlands: Evolution and Records of Environmental and Climate Changes, Elsevier B.V., Amsterdam, 287–319. [CrossRef] [Google Scholar]
  • Gilbert D., Amblard C., Bourdier G. and Francez A.J., 1998. The microbial loop at the surface of a peatland: structure, functioning and impact of nutrients inputs. Microbial Ecol., 35, 89–93. [CrossRef] [Google Scholar]
  • Gilbert D., Amblard C., Bourdier G., Francez A.J. and Mitchell E.A.D., 2000. La régime alimentaire des thècamoebiens. Ann. Biol., 39, 57–68. [Google Scholar]
  • Golterman H.L., 1969. Methods for Chemical Analysis of Freshwaters, Blackwell Scientific Publications, Oxford, Edinburgh, 213 p. [Google Scholar]
  • Górniak A., Jakatierynczuk-Rudczyk E. and Dobrzyń P., 1999. Hydrochemistry of three dystrophic lakes in north-eastern Poland. Acta Hydroch. Hydrobiol., 27, 12–18. [CrossRef] [Google Scholar]
  • Grolière C.A., 1975. Descriptions de quleques ciliés hypotriches des tourbières à sphaignes et des étendues d'eau acides. Protistologica, 11, 481–498. [Google Scholar]
  • Grolière C.A., 1977. Contribution à l'étude de quelques ciliés des sphaignes: II – Dynamique des populations. Protistologica, 13, 335–352. [Google Scholar]
  • Grolière C.A., 1978. Contribution à l'étude des ciliés des sphaignes: III. Étude mathématique des résultats. Protistologica, 14, 295–311. [Google Scholar]
  • Heal O.W., 1964. Observations on the seasonal and spatial distribution of testacea (Protozoa: Rhizopoda) in Sphagnum. J. Anim. Ecol., 33, 395–412. [CrossRef] [Google Scholar]
  • Herbichowa M. and Potocka J., 2004. Raised beatbogs with peat forming plants. Torfowiska wysokie z roślinnością torfotwórczą (żywe). Guide to Protection of Habitats and Species NATURA 2000, pp. 115–137. [Google Scholar]
  • Jassey E.J.V., Chiapusio G., Mitchell E.A.D., Binet P., Toussaint M.L. and Gilbert D., 2011. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb. Ecol., 2, 374–385. [CrossRef] [Google Scholar]
  • Jauhiainen S., 2002. Testacean amoebae in different types of mire following drainage and subsequent restoration. Eur. J. Protistol., 38, 59–72. [CrossRef] [Google Scholar]
  • Kruk M., 2003. Biogeochemical multifunctionality of wetland ecotones in Lakeland agricultural landscape. Pol. J. Ecol., 2, 247–254. [Google Scholar]
  • Lamentowicz M. and Mitchell E.A.D., 2005. The ecology of Testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol., 50, 48–63. [CrossRef] [PubMed] [Google Scholar]
  • Lamentowicz M., Lamentowicz Ł., van der Knaap W.O., Gąbka M. and Mitchell E.A.D., 2010. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient. Microb. Ecol., 59, 499–510. [CrossRef] [PubMed] [Google Scholar]
  • Lepš J. and Šmilauer P., 2003. Multivariate Analysis of Ecological Data using CANOCO, Cambridge University Press, Cambridge, 269 p. [Google Scholar]
  • Meisterfeld R., 1977. Horizontal and vertical distribution of Testacea (Rhizopoda-Testacea) in Sphagnum. Arch. Hydrobiol., 79, 319–356. [Google Scholar]
  • Mieczan T., 2007. Epiphytic protozoa (Testate amoebae, ciliates) associated with Sphagnum in peatbogs: relationship to chemical parameters. Pol. J. Ecol., 55, 79–90. [Google Scholar]
  • Mieczan T., 2009a. Ciliates in Sphagnum peatlands: vertical micro-distribution, and relationships of species assemblages with environmental parameters. Zool. Stud., 1, 33–48. [Google Scholar]
  • Mieczan T., 2009b. Ecology of testate amoebae (Protists) in Sphagnum peatlands of eastern Poland: vertical micro-distribution and species assemblages in relation to environmental parameters. Ann. Limnol. -Int. J. Limnol., 45, 41–49. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mieczan T., 2010. Vertical micro-zonation of testate amoebae and ciliates in peatland waters in relation to potential food resources and grazing pressure. Int. Rev. Hydrobiol., 95, 86–102. [CrossRef] [Google Scholar]
  • Mieczan T., 2012. Distributions of Testate amoebae and Ciliates in different types of peatlands and their contributions to the nutrient supply. Zool. Stud., 51, 1–9. [Google Scholar]
  • MVSP., 2002. Multivariate Statistical Package. Kovach Computering Services, Vales, UK. [Google Scholar]
  • Payne R.J., 2011. Can testate amoeba-based paleohydrology be extended to fens? J. Quat. Sci., 26, 15–27. [CrossRef] [Google Scholar]
  • Payne R.J. and Mitchell E.A.D., 2007. Ecology of testate amoebae from mires in the Central Rhodope Mountains, Greece and development of transfer function for paleohydrological reconstruction. Protistologica, 158, 159–171. [CrossRef] [Google Scholar]
  • Pejler B. and Berzins B., 1993. On the ecology of mire rotifers. Limnology, 23, 295–300. [Google Scholar]
  • Petz W., 1987. Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land, East Antarctica. Polar Biol., 18, 33–44. [CrossRef] [Google Scholar]
  • Pierce R.W. and Turner J.T., 1992. Ecology of plankton ciliates in marine food webs. Rev. Aquat. Sci., 6, 139–181. [Google Scholar]
  • Strűdel-Kypke M.C. and Schönborn W. 1999. Periphyton and sphagnicolous protists of dystrophic bog lakes (Brandenburg, Germany). II. Characteristic species and trophy of the lakes. Limnologica, 29, 407–424. [CrossRef] [Google Scholar]
  • ter Braak C.J.F. and Šmilauer P., 2002. CANOCO Reference Manual and User`s Guide to Canoco fof Windows: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 p. [Google Scholar]
  • Warner B.G. and Asada T., 2006. Biological diversity of peatlands in Canada. Aquat. Sci., 68, 240–253. [CrossRef] [Google Scholar]
  • Warner B.G., Asada T. and Quinn N.P., 2007. Seasonal influences on the ecology of Testate amoebae (Protozoa) in a small Sphagnum peatland in southern Ontario, Canada. Microb. Ecol., 54, 91–100. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson D.M. and Mitchell E.A.D., 2010. Testate amoebae and nutrient cycling with particular reference to soil. Geomicrobiol. J., 27, 520–533. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.