Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 3, 2012
Page(s) 279 - 287
DOI https://doi.org/10.1051/limn/2012017
Published online 23 July 2012
  • Beschta R.L. and Jackson W.L., 1979. The intrusion of fine sediments into a stable gravel bed. J. Fish. Res. Board Can., 36, 204–210. [CrossRef] [Google Scholar]
  • Boulton A.J., Findlay S., Marmonier P., Stanley E.H. and Valett H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 59–81. [CrossRef] [Google Scholar]
  • Buffington J.M. and Tonina D., 2009. Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr. Compass, 3, 1038–1062. [CrossRef] [Google Scholar]
  • Canavan R.W., Slomp C.P., Jourabchi P., Van Cappellen P., Laverman A.M. and van den Berg G.A., 2006. Organic mineralization in sediment of the coastal freshwater lake and response to salinization. Geochim. Cosmochim. Acta, 70, 2836–2855. [CrossRef] [Google Scholar]
  • Cokgör E.U., Sözen S., Orhon D. and Henze M., 1998. Respirometric analysis of activated sludge behaviour. I. Assessment of the readily biodegradable substrate. Water Res., 32, 461–475. [CrossRef] [Google Scholar]
  • Decaux O., 2011. Transport-reactive in porous media applied to the hyporheic zone: evaluation and estimation of parameters from physical and reactive models. Master degree 2nd, Modelling and Biostatistics, University of Toulouse, France, 48 p. [Google Scholar]
  • Delmotte S., 2007. Rôle de la bioturbation dans le fonctionnement biogéochimique de l'interface eau-sédiment: Modélisation de la diversité des transports biologiques et effets sur la diagénèse précoce des sédiments d'une retenue. PhD Thesis, Université Toulouse III – Paul Sabatier, 282 p. http://www.mad-environnement.com/pdf/Th%E8se_S_Delmotte.pdf [Google Scholar]
  • Fiadeiro M.E. and Veronis G., 1977. On weighted-mean schemes for the finite-difference approximation to the advection-diffusion equation. Tellus, 29, 512–522. [CrossRef] [Google Scholar]
  • Fischer H., Wanner S.C. and Pusch M., 2002. Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry, 61, 37–55. [CrossRef] [Google Scholar]
  • Foulquier A., Mermillod-Blondin F., Malard F. and Gibert J., 2011. Response of sediment biofilm to increased dissolved organic carbon supply in groundwater artificially recharged with stormwater. J. Soils Sediments, 11, 382–393. [CrossRef] [Google Scholar]
  • Gaudet J.P., Jegat H., Vachaud G. and Wierenga P.J., 1977. Solute transfer with exchange between mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Am. J., 41, 665–671. [CrossRef] [Google Scholar]
  • Gayraud S. and Philippe M., 2003. Influence of bedsediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. Int. Rev. Hydrobiol., 88, 77–93. [CrossRef] [Google Scholar]
  • Hancock P.J., 2002. Human impacts on the stream-groundwater exchange zone. Environ. Manage., 29, 763–781. [CrossRef] [PubMed] [Google Scholar]
  • Lefebvre S., Marmonier P. and Pinay G., 2004. Stream regulation and nitrogen dynamics in sediment interstices: comparison of natural and straightened sectors of a third-order stream. River Res. Appl., 20, 499–512. [CrossRef] [Google Scholar]
  • Mermillod-Blondin F., Gaudet J.-P., Gerino M., Desrosiers G., Jose J. and Creuzé des Châtelliers M., 2004. Relative influence of bioturbation and predation on organic matter processing in river sediments: a microcosm experiment. Freshwater Biol., 49, 895–912. [CrossRef] [Google Scholar]
  • Mermillod-Blondin F., Mauclaire L. and Montuelle B., 2005. Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments. Water Res., 39, 1687–1698. [CrossRef] [PubMed] [Google Scholar]
  • Mermillod-Blondin F., Poggiale J.-C., Tolla C., Auger P., Thuiller W. and Creuzé des Châtelliers M., 2008. Using a mathematical model to simulate the influence of tubificid worms (Oligochaeta) on oxygen concentrations in hyporheic sediments. Fundam. Appl. Limnol., 172/2, 135–145. [CrossRef] [Google Scholar]
  • Middelburg J.J., Vlug T. and van der Nat F.J.W.A., 1993. Organic matter mineralization in marine systems. Glob. Planet. Change, 8, 47–58. [CrossRef] [Google Scholar]
  • Navel S., Mermillod-Blondin F., Montuelle B., Chauvet E., Simon L. and Marmonier P., 2011. Water-sediment exchanges control microbial processes associated with leaf litter degradation in the hyporheic zone: a microcosm study. Microb. Ecol., 61, 968–979. [CrossRef] [PubMed] [Google Scholar]
  • Nedwell D.B., Walker T.R., Ellisevans J.C. and Clarke A., 1993. Measurements of seasonal rates and annual budgets of organic carbon fluxes in an Antarctic coastal environment at Signy Island, South Orkney Islands, suggest a broad balance between production and decomposition. Appl. Environ. Microbiol., 59, 3989–3995. [PubMed] [Google Scholar]
  • Nogaro G., Mermillod-Blondin F., Montuelle B., Boisson J.-C., Bedell J.-P., Ohannessian A., Volat B. and Gibert J., 2007. Influence of a stormwater sediment deposit on microbial and biogeochemical processes in infiltration porous media. Sci. Total Environ., 377, 334–348. [CrossRef] [PubMed] [Google Scholar]
  • Nogaro G., Datry T., Mermillod-Blondin F., Descloux S. and Montuelle B., 2010. Influence of streambed sediment clogging on microbial processes of the hyporheic zone. Freshwater Biol., 55, 1288–1302. [CrossRef] [Google Scholar]
  • Oeurng C., Sauvage S. and Sánchez-Pérez J.M., 2011a. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using SWAT model. J. Hydrol., 401, 145–153. [CrossRef] [Google Scholar]
  • Oeurng C., Sauvage S., Coynel A., Maneux E., Etcheber H. and Sánchez-Pérez J.-M., 2011b. Fluvial transport of total suspended sediments and organic carbon from a large agricultural catchment during flood events, southwest France. Hydrol. Process., 25, 2365–2378. [CrossRef] [Google Scholar]
  • Peyrard D., Delmotte S., Sauvage S., Namour P., Gerino M., Vervier P. and Sánchez-Pérez J.M., 2011. Longitudinal transformation of nitrogen and carbon transport and in the hyporheic zone of an N-rich stream: a combined modelling and field study. Phys. Chem. Earth, 36, 599–611. [CrossRef] [Google Scholar]
  • Ramos J.I., 1986. Numerical solution of reactive-diffusion systems. Part 2: Method of lines and implicit algorithms. Int. J. Comput. Math., 18, 141–161. [CrossRef] [Google Scholar]
  • Schälchli U., 1992. The clogging of coarse gravel river beds by fine sediment. Hydrobiologia, 235/236, 189–197. [CrossRef] [Google Scholar]
  • Schoen R., Gaudet J.P. and Elrick D.E., 1999. Modelling of solute transport in a large undisturbed lysimeter, during steady state water flux. J. Hydrol., 215, 82–93. [CrossRef] [Google Scholar]
  • Servais P., Anzil A. and Ventresque C., 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Appl. Environ. Microbiol., 55, 2732–2734. [PubMed] [Google Scholar]
  • Sheibley R.W., Duff J.H., Jackman A.P. and Triska F.J., 2003a. Inorganic nitrogen transformations in the bed of the Shingobee River, Minnesota: integrating hydrologic and biological processes using sediment perfusion cores. Limnol. Oceanogr., 48, 1129–1140. [CrossRef] [Google Scholar]
  • Sheibley R.W., Jackman A.P., Duff J.H. and Triska F.J., 2003b. Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN. Adv. Water Res., 26, 977–987. [CrossRef] [Google Scholar]
  • US EPA (1991) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (4th edn,), EPA/600/4-90/027, US Environmental Protection Agency, Washington, pp. 34–35. [Google Scholar]
  • Vähätalo A.V., Aarnos H. and Mäntyniemi S., 2010. Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry, 37, 130–137. [Google Scholar]
  • Van Cappellen P., and Wang Y., 2006. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am. J. Sci., 296, 197–243. [CrossRef] [Google Scholar]
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130–137. [CrossRef] [Google Scholar]
  • Waters T.F., 1995. Sediment in Streams: Sources, Biological Effects and Control, American Fisheries Society, Bethesda, MD, 251 p. [Google Scholar]
  • Wijsman J.W.M., Herman P.M.J., Middelburg J.J. and Soetaert K., 2002. A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuar. Coast. Shelf Sci., 54, 403–421. [CrossRef] [Google Scholar]
  • Wilczek S., Fischer H., Brunke M. and Pusch M.T., 2004. Microbial activity within a subaqueous dune in a large lowland river (River Elbe, Germany). Aquat. Microb. Ecol., 36, 83–97. [CrossRef] [Google Scholar]
  • Wood P.J. and Armitage P.D., 1997. Biological effects of fine sediment in the lotic environment. Environ. Manage., 21, 203–217. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.