Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 1, 2012
Page(s) 113 - 123
DOI https://doi.org/10.1051/limn/2012001
Published online 20 March 2012
  • Appleby P.G., 2000. Radiometric dating of sediment records in European mountain lakes. J. Limnol., 1 (Suppl. 1), 1–14. [CrossRef] [Google Scholar]
  • Battarbee R.W., Thompson R., Catalan J., Grytnes J.-A. and Birks H.J.B., 2002. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J. Paleolimnol., 28, 1–6. [CrossRef] [Google Scholar]
  • Brancelj A., 1999. The extinction of Arctodiaptomus alpinus (Copepoda) following the introduction of Arctic char into a small alpine lake Dvojno Jezero (NW Slovenia). Aquat. Ecol., 33, 355–361. [CrossRef] [Google Scholar]
  • Brancelj A., 2002. Fauna: Zooplankton, Benthos and Fish. In: Brancelj A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 137–158. [Google Scholar]
  • Brancelj A., Šiško M., Rejec Brancelj I., Jeran Z. and Jaćimović R., 2000a. Effect of land use and fish stocking on a mountain lake – evidence from the sediment. Period. Biol., 102, 259–268. [Google Scholar]
  • Brancelj A., Šiško M., Lami A., Appleby P., Livingstone D.M., Rejec Brancelj I. and Ogrin D., 2000b. Changes in the trophic level of an Alpine lake, Jezero v Ledvici (NW Slovenia), induced by earthquakes and climate change. J. Limnol., 1 (Suppl. 1), 29–42. [Google Scholar]
  • Cammarano P. and Manca M., 1997. Studies on zooplankton in two acidified high mountain lakes in the Alps. Hydrobiologia, 356, 97–109. [CrossRef] [Google Scholar]
  • Carrara P.E. and O'Neill J.M., 2003. Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quatern. Res., 59, 25–35; doi:10.1016/S0033-5894(02)00010-8. [CrossRef] [Google Scholar]
  • Catalan J., Ventura M., Brancelj A., Granados I., Thies H., Nickus U., Korhola A., Lotter A.F., Barbieri A., Stuschlik E., Lien L., Bitušik P., Buchaca T., Camarero L., Goudsmith G.H., Kopaček J., Lemcke G., Livingston D.M., Müller B., Rautio M., Šiško M., Sorvari S., Šporka F., Strunecky O. and Toro M., 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J. Paleolimnol., 28, 25–46. [CrossRef] [Google Scholar]
  • Catalan J., Barbieri M.G., Bartumeus F., Bitušík P., Botev I., Brancelj A., Cogălniceanu D., Manca M., Marchetto A., Ognjanova-Rumenova N., Pla S., Rieradevall M., Sorvari S., Štefkova E., Stuchlík E. and Ventura M., 2009. Ecological thresholds in European alpine lakes. Freshw. Biol., 54, 2494–2517; doi:10.1111/j.1365-2427.2009.02286.x. [CrossRef] [Google Scholar]
  • Cavalli L., Miquelis A. and Chappaz R., 2001. Combined effects of environmental factors and predator-prey interactions on zooplankton assemblages in five high alpine lakes. Hydrobiologia, 455, 127–135. [CrossRef] [Google Scholar]
  • Clesceri L.S., Greenberg A. and Eaton A.D. (eds.), 1998. APHA, AWWA, WEF: Standard Methods for the Examination of Water and Wastewater, 20th edn, United Book Press Inc., Washington, 1–49. [Google Scholar]
  • Dobravec J. and Šiško M., 2002. Geographical location and description of the lakes. In: Brancelj A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 49–76. [Google Scholar]
  • Dumont H.J. and Negrea S.V., 2002. Introduction to the Class Branchiopoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 19, Backhuys, Leiden, 398 p. [Google Scholar]
  • Dussart B.H. and Defaye D., 2001. Introduction to the Copepoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 16 (2nd edn), Backhuys, Leiden, 344 p. [Google Scholar]
  • Fott J., Pražaková M., Stuchlík E. and Stuchlícová Z., 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia, 274, 37–47. [CrossRef] [Google Scholar]
  • Fox J.A., 2007. Hatching timing of Daphnia mendotae diapausing eggs of different ages. Fund. Appl. Limnol., 168, 19–26. [CrossRef] [Google Scholar]
  • Gliwicz Z.M., Slusaraczyk A. and Slusaraczyk M., 2001. Life history synchronization in a long-lifespan single-cohort Daphnia population in a fishless alpine lake. Oecologia, 128, 368–378. [CrossRef] [PubMed] [Google Scholar]
  • Goyke A.P. and Hershey A.E., 1992. Effects of fish predation on larval chironomid (Diptera: Chironomidae) communities in an arctic ecosystem. Hydrobiologia, 240, 203–211. [CrossRef] [Google Scholar]
  • Grant R.A., Halliday T., Balderer P., Leuenberger F., Newcomer M., Cyr G. and Freund F.T., 2011. Ground water chemistry changes before major earthquakes and possible effects on animals. Int. J. Environ. Res. Public Health, 2011, 1936–1956; doi:10.3390/ijerph8061936. [Google Scholar]
  • Grimm E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comp. Geosci., 13, 13–35. [CrossRef] [Google Scholar]
  • Gulizzoni P., Lami A., Manca M., Musazzi S., Marchetto A., 2006. Palaeoenvironmental changes inferred from biological remains in short lake sediment cores from the Central Alps and Dolomites. Hydrobiologia, 562, 167–191. [CrossRef] [Google Scholar]
  • Hammer Ø., Harper D.A.T. and Ryan P.D., 2001. Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electr., 4, 39–48. [Google Scholar]
  • Heiri O., Lotter A.F., 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J. Paleolimnol., 30, 273–289. [CrossRef] [Google Scholar]
  • Hořická Z., Stuchlík E., Hudec I., Martin Černý M. and Fott J., 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: the Tatra Mountains (Slovakia, Poland). Biologia, Bratislava, 61 (Suppl. 18), 121–134; doi:10.2478/s11756-006-0125-6. [CrossRef] [Google Scholar]
  • Jeffrey S.W. and Humphrey G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167, 191–194. [Google Scholar]
  • Jersabek C.D., Brancelj A., Stoch F. and Schabetsberger R., 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia, 453, 309–324. [CrossRef] [Google Scholar]
  • Johnson D.M., Martin T.H., Crowley P.H. and Crowder L.B., 1996. Link strength in littoral food webs: Net effects of small sunfish and larval dragonflies. J. N. Am. Benthol. Soc., 15, 271–288. [CrossRef] [Google Scholar]
  • Koinig K.A., Kamenik C., Schmidt R., Agustí-Panareda A., Appleby P., Lami A., Prazakova M., Rose N., Schnell Ø.A., Tessadri R., Thompson R. and Psenner R., 2002. Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries – the influence of air temperature on biological parameters. J. Paleolimnol., 28, 147–160. [CrossRef] [Google Scholar]
  • Korup O., McSaveney M.J. and Davies T.R.H., 2004. Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphology, 61, 189–207. [CrossRef] [Google Scholar]
  • Levine S.N., Zehrer R.F. and Burns C.W., 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol., 50, 1515–1536; doi:10.1111/j.1365-2427.2005.01420.x. [CrossRef] [Google Scholar]
  • Luger M.S., Schabetsberger R., Jersabek C.D. and Goldschmid A., 2000. Life cycles, size and reproduction of the two coexisting calanoid copepods Arctodiaptomus alpinus (Imhof, 1885) and Mixodiaptomus laciniatus (Lilljeborg, 1889) in a small high-altitude lake. Arch. Hydrobiol., 148, 161–185. [Google Scholar]
  • Muri G. and Brancelj A., 2002. Physical and chemical properties of lake water and ice cover. In: Brancelj A. (ed.), High-Mountain Lakes in the Eastern part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 91–109. [Google Scholar]
  • Nomade J., Chapron E. and Desmet M., 2005. Reconstructing historical seismicity from lake sediments (Lake Laffrey, western Alps, France). Terra Nova, 17, 350–357. [CrossRef] [Google Scholar]
  • Radziminovich Y.B., Shchetnikov A.A. and Vologina E.G., 2010. The “methane eruption” on Lake Baikal in 1912 as an effect of a strong earthquake. Dokl. Earth Sci., 432, 583–586. [CrossRef] [Google Scholar]
  • Sacherová V., Kršková R., Stuchlík E., Hořická Z., Hudec I. and Fott J., 2006. Long-term change of the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia, Bratislava, 61 (Suppl. 18), 109–119. [CrossRef] [Google Scholar]
  • Samuel H., Jephson T., Lebret K., Einem J., Fagerberg T., Balseiro E., Modenutti B., Souza S.S., Laspoumaderes C., Jönsson M., Ljungberg P., Nicolle A., Nilsson P.A., Ranåker L. and Hansson L.-A., 2011. Climate-induced input of turbid glacial meltwater affects vertical distribution and community composition of phyto- and zooplankton. J. Plankt. Res., 33, 1239–1248. [CrossRef] [Google Scholar]
  • Santer B., 1998. Life cycle strategies of free-living copepods in fresh waters. J. Mar. Syst., 15, 327–336. [CrossRef] [Google Scholar]
  • Schabetsberger R., Grill S., Hauser G. and Wukits P., 2006. Zooplankton successions in neighboring lakes with contrasting impacts of amphibian and fish predators. Internat. Rev. Hydrobiol., 91, 197–221. [CrossRef] [Google Scholar]
  • Schabetsberger R., Luger M.S., Drozdowski G. and Jagsch A., 2009. Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biol. Inv., 11, 1335–1345. [CrossRef] [Google Scholar]
  • Smirnov N.N., 1971. Chydoridae fauny mira. Fauna SSSR. Rakoobraznye=Chydoridae Fauna of the World. Fauna of the USSR. Crustaceans. Nauka, Leningrad, 531 p. [Google Scholar]
  • Sommaruga R., 2001. The role of UV radiation in the ecology of alpine lakes. J. Photoch. Photobiol., B-Biol., 62, 35–42; doi:10.1016/S1011-1344(01)00154-3. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Šiško M. and Kosi G., 2002. Algae. In: Brancelj A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps, ZRC Publishing and National Institute of Biology, Ljubljana, 111–128. [Google Scholar]
  • Šporka F., Štefková E., Bitušík P., Thompson A.R., Agustí-Panareda A., Appleby P.G., Gryntes J.A., Kamenik C., Krno I., Lami A., Rose N. and Shilland N.E., 2002. The paleolomnological analysis of sediments from high mountain lake Nizne Terianske Pleso in the High Tatras (Slovakia). J. Paleolimnol., 28, 95–109. [CrossRef] [Google Scholar]
  • ter Braak C.J.F. and Smilauer, P., 2002. CANOCO – Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca. [Google Scholar]
  • Theis, H., 1994. Chemical properties of an acidified humic headwater lake with respect to reducing acidic depositions and expected climate-change. Hydrobiologia, 274, 143–154. [CrossRef] [Google Scholar]
  • Vidrih R., 2008. Potresna dejavnost Zgornjega Posočja [Seizmic activity of the Upper Posočje area]. Agencija republike Slovenije za okolje, Urad za seizmologijo in geologijo [Environmental Agency of the Republic of Slovenia, Seizmology and Geology office], Ljubljana, 352 p. [Google Scholar]
  • Vinebrooke R.D. and Leavitt P.R., 1998. Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiation on an alpine littoral food web. Limnol. Oceanogr., 43, 1065–1081. [CrossRef] [Google Scholar]
  • Wograth S. and Psenner R., 1995. Seasonal, annual and long-term variability in the water chemistry of a remote high mountain lake: Acid rain versus natural changes. Water Air Soil Poll., 85, 359–364. [CrossRef] [Google Scholar]
  • Wetzel R.G., 2003. Limnology. Lake and River Ecosystems (3rd edn), Academic Press, London, 1006 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.