Editor's Choice
Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 48, Number 1, 2012
Page(s) 95 - 103
DOI https://doi.org/10.1051/limn/2012002
Published online 14 March 2012
  • Abbot P., 2001. Individual and population variation in invertebrates revealed by inter-simple sequence repeats (ISSRs). J. Insect Sci., 1.8, 3. [Google Scholar]
  • Aladin N.V. and Potts W.T.W., 1995. Osmoregulatory capacity of the Cladocera. J. Comp. Physiol. B., 164, 671–683. [CrossRef] [Google Scholar]
  • Alonso M., 1996. Fauna Ibérica. Crustacea, Branquiopoda, vol 7. Museo Nacional de Ciencias Naturales. Consejo Superior de Investigaciones Científicas, Madrid, 486 p. [Google Scholar]
  • Alves A., Phillips A., Henriques I. and Correia A., 2007. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res. Microbiol., 158, 112–121. [CrossRef] [PubMed] [Google Scholar]
  • Antunes S.C., Castro B.B. and Goncalves F., 2004. Effect of food level on the acute and chronic responses of daphnids to lindane. Environ. Pollut., 127, 367–375. [CrossRef] [PubMed] [Google Scholar]
  • Arnér M. and Koivisto S., 1993. Effects of salinity on metabolism and life history characteristics of Daphnia magna. Hydrobiologia, 259, 69–77. [CrossRef] [Google Scholar]
  • ASTM, 1980. Standard Practice for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates and Amphibians. American Society for Testing and Materials, Philadelphia. [CrossRef] [Google Scholar]
  • Baird D.J., Soares A.M.V.M., Girling A., Barber I., Bradley M.C. and Calow P., 1989. The long-term maintenance of Daphnia magna Straus for use in ecotoxicity tests: problems and prospects. In: Lokke H., Tyle H. and Bro-Rasmussen F. (eds.), Proceedings of the First European Conference on Ecotoxicology, Lyngby, 144–148. [Google Scholar]
  • Barry M.J., Tibby J., Tsitsilas A., Mason B., Kershaw P. and Heijnis H., 2005. A long term lake-salinity record and its relationships to Daphnia populations. Arch. Hydrobiol., 163, 1–23. [CrossRef] [Google Scholar]
  • Boersma M., De Meester L. and Spaak P., 1999. Environmental stress and local adaptation in Daphnia magna. Limnol. Oceanogr., 44, 393–402. [CrossRef] [Google Scholar]
  • Brede N., Thielsch A., Sandrock C., Spaak P., Keller B., Streit B. and Schwenk K., 2006. Microsatellite markers for European Daphnia. Mol. Ecol. Notes, 6, 536–539. [CrossRef] [Google Scholar]
  • Chopelet J., Blier P.U. and Dufresne F., 2008. Plasticity of growth rate and metabolism in Daphnia magna populations from different thermal habitats. J. Exp. Zool. A: Ecol. Genet. Physiol., 309A, 553–562. [CrossRef] [Google Scholar]
  • Cousyn C., De Meester L., Colbourne J.K., Brendonck L., Verschuren D. and Volckaert F., 2001. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc. Natl. Acad. Sci. USA, 98, 6256–6260. [CrossRef] [Google Scholar]
  • Culley T.M. (2005) Population Genetic Analysis of ISSR Data. Available online http://www.artsci.uc.edu/collegedepts/biology/fac_staff/culley/docs/Population%20Genetic%20Analysis%20of%20ISSR%20Data.pdf (accessed September 2011). [Google Scholar]
  • De Meester L., 1996a. Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna. Evolution, 50, 1293–1298. [CrossRef] [Google Scholar]
  • De Meester L., 1996b. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience, 3, 385–399. [Google Scholar]
  • De Meester L., Gómez A., Okamura B. and Schwenk K., 2002. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol. - Int. J. Ecol., 23, 121–135. [CrossRef] [EDP Sciences] [Google Scholar]
  • De Meester L., Vanoverbeke J., De Gelas K., Ortells R. and Spaak P., 2006. Genetic structure of cyclic parthenogenetic zooplankton populations – a conceptual framework. Arch. Hydrobiol., 167, 217–244. [CrossRef] [Google Scholar]
  • Dusinský R., Kúdela M., Stloukalová V. and Jedlicka L., 2006. Use of inter-simple sequence repeat (ISSR) markers for discrimination between and within species of blackflies (Diptera: Simuliidae). Biologia, Bratislava, 61, 299–304. [CrossRef] [Google Scholar]
  • Elendt B.P. and Bias W.R., 1990. Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna. Water Res., 24, 1157–1167. [CrossRef] [Google Scholar]
  • Gonçalves A.M.M., Castro B.B., Pardal M.A. and Gonçalves F., 2007. Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann. Limnol. - Int. J. Limnol., 43, 13–20. [CrossRef] [EDP Sciences] [Google Scholar]
  • Grasela J.J. and McIntosh A.H., 2003. Application of inter-simple sequence repeats to insect cell lines: identification at the clonal and tissue-specific level. Vitro Cell. Dev. Biol. Animal, 39, 356–363. [Google Scholar]
  • Hann B.J., 1995. Genetic-variation in Simocephalus (Anomopoda, Daphniidae) in North-America – patterns and consequences. Hydrobiologia, 307, 9–14. [CrossRef] [Google Scholar]
  • Hoffmann A.A. and Parsons P.A., 1993. Evolutionary Genetics and Environmental Stress. Oxford University Press, New York, 296 p. [Google Scholar]
  • IPCC, 2008. Climate Change and Water – Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva. [CrossRef] [Google Scholar]
  • ISO, 1996. Water Quality: Determination of the Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea) – Acute Toxicity Test. Internacional Organization for Standardization, Geneva. [CrossRef] [Google Scholar]
  • Jeppesen E., Sondergaard M., Kanstrup E., Petersen B., Eriksen R.B., Hammershoj M., Mortensen E., Jensen J.P. and Have A., 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ?Hydrobiologia, 276, 15–30. [CrossRef] [Google Scholar]
  • Jeppesen E., Sondergaard M., Pedersen A.R., Jurgens K., Strzelczak A., Lauridsen T.L. and Johansson L.S., 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems, 10, 47–57. [Google Scholar]
  • Karp A. and Edwards K.J., 1997. DNA markers: a global overview. In: Caetano-Anollés G. and Gresshoff P.M. (eds.), DNA Markers: Protocols, Applications, and Overviews. Wiley-Liss, New York, 1–13. [Google Scholar]
  • Lopes I., Baird D.J. and Ribeiro R., 2004. Genetic determination of tolerance to lethal and sublethal copper concentrations in field populations of Daphnia longispina. Arch. Environ. Contam. Toxicol., 46, 43–51. [CrossRef] [PubMed] [Google Scholar]
  • Lopes I., Baird D.J. and Ribeiro R., 2005. Genetically determined resistance to lethal levels of copper by Daphnia longispina: association with sublethal response and multiple/coresistance. Environ. Toxicol. Chem., 24, 1414–1419. [CrossRef] [PubMed] [Google Scholar]
  • Marques S.C., Azeiteiro U.M., Marques J.C., Neto J.M. and Pardal M.A., 2006. Zooplankton and ichthyoplankton communities in a temperate estuary: spatial and temporal patterns. J. Plankton Res., 28, 297–312. [CrossRef] [Google Scholar]
  • Martínez-Jerónimo F. and Martínez-Jerónimo L., 2007. Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotoxicol. Environ. Saf., 67, 411–416. [CrossRef] [PubMed] [Google Scholar]
  • Muyssen B.T.A., Bossuyt B.T.A. and Janssen C.R., 2005. Inter- and intra-species variation in acute zinc tolerance of field-collected cladoceran populations. Chemosphere, 61, 1159–1167. [CrossRef] [PubMed] [Google Scholar]
  • Nielsen D.L., Brock M.A., Vogel M. and Petrie R., 2008. From fresh to saline: a comparison of zooplankton and plant communities developing under a gradient of salinity with communities developing under constant salinity levels. Mar. Freshw. Res., 59, 549–559. [CrossRef] [Google Scholar]
  • Northcote T.G. and Hall K.J., 2010. Salinity regulation of zooplanktonic abundance and vertical distribution in two saline meromictic lakes in south central British Columbia. Hydrobiologia, 638, 121–136. [CrossRef] [Google Scholar]
  • OECD, 2004. Daphnia sp., Acute Immobilization Test. Organization for the Economic Cooperation and Development, Paris. [CrossRef] [Google Scholar]
  • Pfrender M.E. and Lynch M., 2000. Quantitative genetic variation in Daphnia: temporal changes in genetic architecture. Evolution, 54, 1502–1509. [PubMed] [Google Scholar]
  • Ribeiro R., Lopes I., Pereira A.M.M., Goncalves F. and Soares A.M.V.M., 2000. Survival time of Ceriodaphnia dubia in acid waters with metal contamination. Bull. Environ. Contam. Toxicol., 64, 130–136. [CrossRef] [PubMed] [Google Scholar]
  • Santangelo J.M., Bozelli R.L., Rocha A.D. and Esteves F.D., 2008. Effects of slight salinity increases on Moina micrura (Cladocera) populations: field and laboratory observations. Mar. Freshw. Res., 59, 808–816. [CrossRef] [Google Scholar]
  • Sarma S.S.S., Nandini S., Morales-Ventura J., Delgado-Martínez I. and González-Valverde L., 2006. Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquat. Ecol., 40, 349–360. [CrossRef] [Google Scholar]
  • Schallenberg M., Hall C.J. and Burns C.W., 2003. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar. Ecol. – Prog. Ser., 251, 181–189. [CrossRef] [Google Scholar]
  • Schwenk K., Sand A., Boersma M., Brehm M., Mader E., Offerhaus D. and Spaak P., 1998. Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquat. Ecol., 32, 37–51. [CrossRef] [Google Scholar]
  • Teschner M., 1995. Effects of salinity on the life-history and fitness of Daphnia magna – variability within and between populations. Hydrobiologia, 307, 33–41. [CrossRef] [Google Scholar]
  • USEPA, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms (5th edn), US Environmental Protection Agency, Washington. [CrossRef] [Google Scholar]
  • Weber A. and Declerck S., 1997. Phenotypic plasticity of Daphnia life history traits in response to predator kairomones: genetic variability and evolutionary potential. Hydrobiologia, 360, 89–99. [CrossRef] [Google Scholar]
  • Weider L.J. and Hebert P.D.N., 1987. Ecological and physiological differentiation among low-arctic clones of Daphnia pulex. Ecology, 68, 188–198. [CrossRef] [Google Scholar]
  • Wilson R.W. and Taylor E.W., 1993. The physiological responses of freshwater rainbow trout, Oncorhynchus mykiss, during acutely lethal copper. J. Comp. Physiol. B., 163, 38–47. [CrossRef] [Google Scholar]
  • Zietkiewicz E., Rafalski A. and Labuda D., 1994. Genome fingerprinting by simples sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20, 176–183. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.