Free Access
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 4, 2011
Page(s) 339 - 346
Published online 31 January 2012
  • Alonso A., González-Muñoz N. and Castro-Díez P., 2010. Comparison of leaf decomposition and macroinvertebrate colonization between exotic and native trees in a freshwater ecosystem. Ecol. Res., 25, 647–653. [CrossRef] [Google Scholar]
  • Armendáriz L.C., 2008. Life cycle of Dero (Aulophorus) costatus Marcus, 1944 (Tubificidae, Oligochaeta) in a vegetated pond at Los Talas, Argentina. Gayana, 72, 23–30. [Google Scholar]
  • Azevedo M.T.P., Souza C.A., Rosado T., Huszar V. and Roland F., 2003. Limnothrix bicudoi, a new species of Cyanophyceae/Cyanobacteria from Southeast of Brazil. Algol. Stud., 109, 93–102. [CrossRef] [Google Scholar]
  • Bärlocher F., 2005. Leaching. In: Bärlocher F., Gessner M.O., Graça M.A.S. (eds.), Methods to study litter decomposition: a practical guide. Springer, Berlin/New York, pp. 33–36. [CrossRef] [Google Scholar]
  • Bärlocher F. and Porter C.W., 1986. Digestive enzymes and feeding strategies of three stream invertebrates. J. N. Am. Benthol. Soc., 5, 58–66. [CrossRef] [Google Scholar]
  • Bohman I.M. and Herrmann J., 2006. The timing of winter-growing shredder species and leaf litter turnover rate in an oligotrophic lake, SE Sweden. Hydrobiologia, 556, 99–108. [CrossRef] [Google Scholar]
  • Bojková J., Schenková J., Horsák M. and Hájek M., 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 667, 159–171. [CrossRef] [Google Scholar]
  • Boulton A.J. and Boon P.I., 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Aust. J. Mar. Freshw. Res., 42, 1–43. [Google Scholar]
  • Brinkhurst R.O. and Jamieson B.G.M., 1971. Aquatic Oligochaeta of the World. University of Toronto Press, Toronto. [Google Scholar]
  • Brinkhurst R.O. and Marchese M.R., 1989. Guia para la indentificación de oligoquetos acuáticos continentales de Sud y Centroamérica. Asociacíon de Ciências Naturales del Litoral, Argentina. [Google Scholar]
  • Capello S., Marchese M. and Ezcurra De Drago I., 2004. Descomposición y colonización por invertebrados de hojas de Salix humboldtiana en la llanura aluvial Del río Paraná Medio. Amazoniana, 18, 125–143. [Google Scholar]
  • Carvalho E.M. and Uieda V.S., 2004. Colonization by benthic macroinvertebrates in artificial and natural substrates in a mountain stream from Itatinga, São Paulo, Brazil. Rev. Bras. Zool., 21, 287–293. [CrossRef] [Google Scholar]
  • Chauvet E., 1997. Leaf litter decomposition in large rivers: the case of the River Garonne. Limnetica, 13, 65–70. [Google Scholar]
  • Chauvet E., Giani N. and Gessner M.O., 1993. Breakdown and invertebrate colonization of leaf litter in two contrasting streams: significance of Oligochaetes in a large river. Can. J. Fish. Aq. Sci., 50, 488–495. [Google Scholar]
  • Dufrêne M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Elissen H.J.H., Peeters E.T.H.M., Buys B.R., Klapwijk A. and Rulkens W., 2008. Population dynamics of free-swimming Annelida in four Dutch wastewater treatment plants in relation to process characteristics. Hydrobiologia, 605, 131–142. [CrossRef] [Google Scholar]
  • Ferreiro N., Feijoó C., Giorgi A. and Leggieri L., 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia, 664, 199–211. [CrossRef] [Google Scholar]
  • Galizzi M.C. and Marchese M., 2007. Descomposición de hojas de Tessaria integrifólia (Asteraceae) y colonización por invertebrados en un cauce secundario del río Paraná Medio. Interciencia, 32, 535–540. [Google Scholar]
  • Galizzi M.C. and Marchese M., 2009. Invertebrate colonization on Eucalyptus camaldulensis Dehnhardt leaf litter breakdown in an anabranche of the Middle Paraná River. Hidrobiológica, 19, 141–149. [Google Scholar]
  • Gaudes A., Artigas J., Romaní A.M., Sabater S. and Muñoz I., 2009. Contribution of microbial and invertebrate communities to leaf litter colonization in a Mediterranean stream. J. N. Am. Benthol. Soc., 28, 34–43. [CrossRef] [Google Scholar]
  • Gessner M.O., Chauvet E. and Dobson M., 1999. A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384. [CrossRef] [Google Scholar]
  • Gonçalves J.F. Jr., Esteves F.A. and Callisto M., 2003. Chironomids colonization on Nymphaea ampla L. detritus during a degradative ecological sucession experiment in a Brazilian coastal lagoon. Acta limnol. Bras., 15, 21–27. [Google Scholar]
  • Gonçalves J.F. Jr., Santos A.M. and Esteves F.A., 2004. The influence of the chemical composition of Typha domingensis and Nymphaea ampla detritus on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia, 527, 125–137. [CrossRef] [Google Scholar]
  • Gonçalves J.F. Jr., França J.S., Medeiros A.O., Rosa C.A. and Callisto M., 2006. Leaf breakdown in a tropical stream. Internat. Rev. Hydrobiol., 91, 164–177. [CrossRef] [Google Scholar]
  • Gonçalves J.F. Jr., Graça M.A.S. and Callisto M., 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrient levels and low density of shredders. Freshw. Biol., 52, 1440–1451. [Google Scholar]
  • Gulis V. and Suberkropp K., 2003. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat. Microb. Ecol., 30, 149–157. [CrossRef] [Google Scholar]
  • Hammer Ø., Harper D.A.T. and Ryan P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeont. Elect., 4, 1–9. [Google Scholar]
  • Harrison S.S.C., Bradley D.C. and Harris I.T., 2005. Uncoupling strong predator-prey interactions in streams: the role of marginal macrophytes. Oikos, 108, 433–448. [CrossRef] [Google Scholar]
  • Learner M.A., Lochhead G. and Hughes B.D., 1978. A review of the biology of British Naididae (Oligochaeta) with emphasis on the lotic environment. Freshw. Biol., 8, 357–375. [Google Scholar]
  • Levin L.A., Talley D.M. and Thayer G., 1996. Macrobenthic succession in a created salt marsh. Mar. Ecol., Prog. Ser., 141, 67–82. [CrossRef] [Google Scholar]
  • Ligeiro R., Moretti M.S., Gonçalves J.F. Jr. and Callisto M., 2010. What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia, 654, 237–244. [CrossRef] [Google Scholar]
  • Mathuriau C. and Chauvet E., 2002. Breakdown of litter in a neotropical stream. J. N. Am. Benthol. Soc., 21, 384–396. [CrossRef] [Google Scholar]
  • Moretti M.S., Gonçalves J.F., Ligeiro R. and Callisto M., 2007. Invertebrates colonization on native trees leaves in a neotropical stream (Brazil). Internat. Rev. Hydrobiol., 92, 199–210. [CrossRef] [Google Scholar]
  • Mormul R.P., Vieira L.A., Pressinatte Júnior S., Monkolski A. and Santos A.M., 2006. Sucessão de invertebrados durante o processo de decomposição duas plantas aquáticas (Eichhornia azurea e Polygonum ferrugineum). Acta Sci. Biol. Sci., 28, 109–115. [Google Scholar]
  • Nelson S.M., 2011. Comparisons of macrophyte breakdown, associated plant chemistry, and macroinvertebrates in a wastewater dominated stream. Internat. Rev. Hydrobiol., 96, 72–89. [CrossRef] [Google Scholar]
  • Newman R.M., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. N. Am. Benthol. Soc., 10, 89–114. [Google Scholar]
  • Ohtaka A., Narita T., Kamiya T., Katakura H., Araki Y., Im S., Chhay R. and Tsukawaki S., 2010. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology, 6, 91–103. [Google Scholar]
  • Pagioro T.A. and Thomaz S.M., 1998. Loss of weight and concentration of carbon nitrogen and phosphorus during decomposition of Eichhornia azurea in the floodplain of the upper Paraná River, Brazil. Rev. Bras. Biol., 58, 603–608. [CrossRef] [Google Scholar]
  • Petersen R.C. and Cummins K.W., 1974. Leaf processing in a woodland stream. Freshw. Biol., 4, 343–368. [Google Scholar]
  • Pieczńska E., 1993. Detritus and nutrient dynamics in the shore zone of lakes: a review. Hydrobiologia, 251, 49–58. [CrossRef] [Google Scholar]
  • Ramseyer U. and Marchese M., 2009. Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Paraná River. Limnetica, 28, 1–10. [Google Scholar]
  • Rennie M.D. and Jackson L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aq. Sci., 62, 2088–2099. [Google Scholar]
  • Righi G., 1984. Manual de identificação de invertebrados límnicos do Brasil – Oligochaeta. CNPq, Brasil. [Google Scholar]
  • Roland F., Esteves F.A. and Santos J.E., 1990. Decomposição da macrófita aquática Eichhornia azurea (Kunth), com ênfase na colonização por bactérias epifíticas. Acta Limnol. Bras., 3, 653–673. [Google Scholar]
  • Schenková J. and Helesic J., 2006. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokttná River, Czech Republic – a small highland stream. Hydrobiologia, 564, 117–126. [CrossRef] [Google Scholar]
  • Schulze D.J. and Walker K.F., 1997. Riparian eucalypts and willows and their significance for aquatic invertebrates in the River Murray, South Australia. Regul. Riv.: Res. Manage., 13, 557–577. [CrossRef] [Google Scholar]
  • Silva D.S., Cunha-Santino M.B., Marques E.E. and Bianchini I. Jr., 2011. The decomposition of aquatic macrophytes: bioassays versus in situ experiments. Hydrobiologia, 665, 219–227. [CrossRef] [Google Scholar]
  • Smock L.A. and Stoneburner D.L., 1980. The response of macroinvertebrate to aquatic macrophyte decomposition. Oikos, 35, 397–403. [CrossRef] [Google Scholar]
  • Stoler A.B. and Relyea R.A., 2011. Living in the litter: the influence of tree leaf litter on wetland communities. Oikos, 120, 862–872. [CrossRef] [Google Scholar]
  • Stripari N. and Henry R., 2002. The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema river into Jurumirim Reservoir (São Paulo, Brazil). Braz. J. Biol., 62, 293–310. [CrossRef] [PubMed] [Google Scholar]
  • Swan C.M. and Palmer M.A., 2004. Leaf diversity alters litter breakdown in a Piedmont stream. J. N. Am. Benthol. Soc., 23, 15–28. [CrossRef] [Google Scholar]
  • Syrovátka V., Schenková J. and Brabec K., 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundam. Appl. Limnol., 173, 43–62. [CrossRef] [Google Scholar]
  • Thomaz S.M., Dibble E.D., Evangelista L.R., Higuti J. and Bini L.M., 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol., 53, 358–367. [Google Scholar]
  • Walpola H., Leichtfried M., Amarasinghe M. and Füreder L., 2011. Leaf litter decomposition of three riparian tree species and associated macroinvertebrates of Eswathu Oya, a low order tropical stream in Sri Lanka. Internat. Rev. Hydrobiol., 96, 90–104. [CrossRef] [Google Scholar]
  • Walters K.H. and Smock L.A., 1991. Cellulase activity of leaf litter and stream-dwelling, shredder macroinvertebrates. Hydrobiologia, 220, 29–35. [CrossRef] [Google Scholar]
  • Xie Z., Shu S., Zhang J., Chen J. and Cai Q., 2008. Oligochaete assemblages associated with macrophytes in the Liangzi Lake District, China. J. Freshw. Ecol., 23, 237–244. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.