Open Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 47, 2011
River ecosystem health assessment: the value in the management and restoration
Page(s) S3 - S14
DOI https://doi.org/10.1051/limn/2011016
Published online 08 July 2011
  • Allan J.D., 1995. Stream ecology: structure and function of running waters, Chapman and Hall, London. [Google Scholar]
  • Allan J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst., 35, 257–284. [Google Scholar]
  • Allan J.D., Erickson D.L. and Fay J., 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biol., 37, 149–161. [Google Scholar]
  • An K.-G., Jung S.H. and Choi S.S., 2001. An evaluation on health conditions of Pyongchang River using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI). Korean J. Limnol., 34, 153–165 (in Korean). [Google Scholar]
  • An K.-G., Lee J.Y., Bae D.-Y., Kim J.-H., Hwang S.-J., Won D.-H., Lee J.-K. and Kim C.-S., 2006. Ecological assessments of aquatic environment using multi-metric model in major nationwide stream watershed. J. Korean Sco. Water Qual., 22, 796–804 (in Korean). [Google Scholar]
  • Angermier P.L. and Karr J.R., 1986. Applying an index of biotic integrity based on stream fish communities: considerations in sampling and interpretation. N. Am. J. Fish. Manage., 6, 418–429. [Google Scholar]
  • Barbour M.T., Gerritsen J., Snyder B.D. and Stribling J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd edn., EPA 841/B-99/002, US Environmental Protection Agency, Washington, DC. [Google Scholar]
  • Beketov M.A., 2004. Different sensitivity of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. Hydrobiologia, 528, 209–216. [Google Scholar]
  • Berkman H.E. and Rabeni C.F., 1987. Effect of siltation on stream fish communities. Environ. Biol. Fish., 18, 285–294. [Google Scholar]
  • Bolstad P.V. and Swank W.T., 1997. Cumulative impacts of land use on water quality in a southern Appalachian watershed. J. Am. Water Res. Assoc., 33, 519–533. [CrossRef] [Google Scholar]
  • Booth D.B., 2005. Challenges and prospects for restoring urban streams: a perspective from the Pacific Northwest of North America. J. N. Am. Benthol. Soc., 24, 724–737. [Google Scholar]
  • Bourassa N. and Cattaneo A., 1998. Control of periphyton biomass in Laurentian streams. J. N. Am. Benthol. Soc., 17, 420–429. [Google Scholar]
  • Brierley G.J. and Fryirs K.A., 2005. Geomorphology and River Management-Application of the River Style Framework, Blackwell Publishing, Oxford, 398 p. [Google Scholar]
  • Bryce S.A. and Hughes R.M., 2003. Variable assemblage responses to multiple disturbance gradients: case studies in Oregon and Appalachia, USA. In: Simon T.P. (ed.), Biological Response Signatures: Indicator Patterns Using Aquatic Communities, CRC Press, Boca Raton, FL, 539–560. [Google Scholar]
  • Carlisle D.M., Falcone J. and Meador M.R., 2009. Predicting the biological condition of streams: use of geospatial indicators of natural and anthropogenic characteristics of watersheds. Environ. Monit. Assess., 151, 143–160. [CrossRef] [PubMed] [Google Scholar]
  • Chambers P.A., Meissner R., Wrona F.J., Rupp H., Guhr H., Seeger J., Culp J.M. and Brua R.B., 2006. Changes in nutrient loading in an agricultural watershed and its effects on water quality and stream biota. Hydrobiologia, 556, 399–415. [Google Scholar]
  • Chandler J.R., 1970. A biological approach to water quality management. Water Pollut. Control, 69, 415–422. [Google Scholar]
  • Cho Y.H., 1997. A study on evaluation method of stream naturalness for ecological restoration of stream corridors. J. Korean Inst. Landscape Arch., 25, 2073–2081 (in Korean). [Google Scholar]
  • Chung J., 1987. An assessment of water quality by epilithic diatoms of Hyungsan River water-system. Korean J. Phycol., 2, 139–146 (in Korean). [Google Scholar]
  • Chung Y.H., Shin J.H. and Lee M.J., 1965. A study on the microflora of the Han River. I. The phytoplankton and the effect of the marine water in the lower course of the Han River. Korean J. Bot., 8, 7–29 (in Korean). [Google Scholar]
  • Cuffney T.F., Zappia H., Giddings E.M.P. and Coles J.F., 2005. Effects of urbanization on benthic macroinvertebrate assemblages in contrasting environmental settings: Boston, Birmingham, and Salt Lake City. In: Brown L.R., Gray R.H., Hughes R.M. and Meador M.R. (eds.), Effects of Urbanization on Stream Ecosystems, Am. Fish. Soc., Symp., 47, Bethesda, Maryland, 361–408. [Google Scholar]
  • Davies S.P. and Jackson S.K., 2006. The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecol. Appl., 16, 1251–1266. [Google Scholar]
  • Davis W.S. and Simon T.P. (eds.), 1995. Biological Assessment and Criteria. Tools for Resource Planning and Decision Making, Lewis Publishers, Boca Raton, FL, 415 p. [Google Scholar]
  • Deshon J.E., 1995. Development and application of the invertebrate community index (ICI). In: Davis W.S. and Simon T.P. (eds.), Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making, Lewis Publishers, Boca Raton, FL, 217–243. [Google Scholar]
  • DIN 38410, 1990. Biological-ecological analysis of water (group M): determination of the saprobic index (M2). German standard methods for the examination for water, Part 2, Wastewater and sludge, 10 p. [Google Scholar]
  • EEA, 1996. EEA Report. Surface water quality monitoring: 4.2. Biological assessments, Topic Report No. 2, http://reports.eea.eu.int/92-9167-001-4/page021.html. [Google Scholar]
  • Flinders C.A., Horwitz R.J. and Belton T., 2008. Relationship of fish and macroinvertebrate communities in the mid-Atlantic uplands: implications for integrated assessments. Ecol. Indic., 8, 588–598. [Google Scholar]
  • Gammon J.R., 1976. The fish populations of the middle 340 km of the Wabash River, Purdue University Water Resources Research Center Technical Report 86, Lafayette, IN. [Google Scholar]
  • Gburek W.J. and Folmar G.J., 1999. Flow and chemical contributions to streamflow in an upland watershed: a baseflow survey. J. Hydrologia, 217, 1–18. [CrossRef] [Google Scholar]
  • Griffith M.B., Hill B., Mccormick H., Kaufmann R., Herlihy T. and Selle A.R., 2005. Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern Rocky Mountain streams. Ecol. Indic., 5, 117–36. [Google Scholar]
  • Hering D., Johnson R.K., Kramm S., Schmutz S., Szoszkiewicz K. and Verdonschot P.F.M., 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates, and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biol., 51, 1757–1785. [Google Scholar]
  • Hilsenhoff W.L., 1977. Use of arthropods to evaluate water quality of streams, Technical Bulletin of the Wisconsin Department of Natural Resources, 100, Madison, WI, 15 p. [Google Scholar]
  • Hilsenhoff W.L., 1982. Using a biotic index to evaluate water quality of streams, Technical Bulletin of the Wisconsin Department of Natural Resources, 132, Madison, WI. [Google Scholar]
  • Hwang S.-J., Kim N.-Y., Won D.H., An K.G., Lee J.K. and Kim C.S., 2006. Biological assessment of water quality by using epilithic diatoms in major river systems (Geum, Youngsan, Seomjin River), Korea. J. Korean Sco. Water Qual., 22, 784–795 (in Korean). [Google Scholar]
  • Jeong K.-S., Joo G.-J., Kim D.K., Lineman M., Kim S.-H., Jang I., Hwang S.-J., Kim J.-H., Lee J.-K. and Byeon M.S., 2008. Development of habitat–riparian quality indexing system as a tool of stream health assessment: case study in the Nakdong River basin. Korean J. Limnol., 41, 499–511 (in Korean). [Google Scholar]
  • Johnson R.K., Furse M.T., Hering D. and Sandin L., 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshwater Biol., 52, 939–958. [Google Scholar]
  • Karr J.R., 1981. Assessment of biological integrity using fish communities. Fisheries, 6, 21–27. [CrossRef] [Google Scholar]
  • Karr J.R. and Chu E.W., 1999. Restoring Life in Running Waters: Better Biological Monitoring, Island Press, Washington, DC. [Google Scholar]
  • Karr J.R. and Chu E.W., 2000. Sustaining living rivers. Hydrobiologia, 422/423, 1–14. [Google Scholar]
  • Karr J.R., Fausch K.D., Angermeier P.L., Yant P.R. and Schlosser I.J., 1986. Assessing biological integrity in running waters: a method and its rationale, Special Publication 5, Illinois Natural History Survey, Champaign, IL. [Google Scholar]
  • Kelly M.G. and Whitton B.A., 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. J. Appl. Phycol., 7, 433–444. [Google Scholar]
  • Kelly M.G., Bennion H., Burgess A., Ellis J., Juggins S., Guthrie R., Jamieson J., Adriaenssens V. and Yallop M., 2009. Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia, 633, 5–15. [Google Scholar]
  • Kennen J.G., 1999. Relation of macroinvertebrate community impairment to catchment characteristics in New Jersey streams. J. Am. Water Res. Assoc., 35, 939–955. [Google Scholar]
  • Kennen J.G., Chang M. and Tracy B.H., 2005. Effects of landscape change on fish assemblage. In: Brown L.R., Gray R.H., Hughes R.M. and Meador M.R. (eds.), Effects of Urbanization on Stream Ecosystems, Am. Fish. Soc., Symp., 47, Bethesda, Maryland, 39–52. [Google Scholar]
  • KMA (Korea Meteorological Administration), 2008. Climate change status and response plan, 2 p. (in Korean). [Google Scholar]
  • Kong D.S., Ryu H.I., Ryu J.K. and Yoon I.B., 1995. The development and application of higher taxa biotic index (HTBI) by benthic macroinvertebrates. P. Korean J. Environ. Toxicol., 11 (in Korean). [Google Scholar]
  • Kratzer E.B., Jackson J.K., Arscott D.B., Aufdenkampe A.K., Dow C.L., Kaplan L.A., Newbold J.D. and Sweeney B.W., 2006. Macroinvertebrate distribution in relation to land use and water chemistry in New York City drinking-water-supply watersheds. J. N. Am. Benthol. Soc., 25, 954–976. [CrossRef] [Google Scholar]
  • Kutka F.J. and Richards C., 1996. Relating diatom assemblage structure to stream habitat quality. J. N. Am. Benthol. Soc., 15, 469–480. [Google Scholar]
  • Kwon Y.S. and An K.-G., 2006. Biological stream health and physico-chemical characteristics in the Keumho River watershed. Korean J. Limnol., 39, 145–156 (in Korean). [Google Scholar]
  • Lammert M. and Allan J.D., 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environ. Manage., 23, 257–270. [Google Scholar]
  • Lee H.D., 1977. A study of Saprobien system according to the water pollution in Han River. Korean J. Limnol., 10, 47–52 (in Korean). [Google Scholar]
  • Lee S.W., Hwang S.J., Lee S.B., Hwang H.S. and Sung H.C., 2009. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape Urban Plan., 92, 80–89. [Google Scholar]
  • Lenat D.R. and Crawford J.K., 1994. Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia, 294, 185–199. [Google Scholar]
  • Levin S.A., 1992. The problem of pattern and scale in ecology. Ecology, 73, 1943–1967. [Google Scholar]
  • Li J., Herlihy A., Gerth W., Kaufmann P., Gregory S., Urquhart S. and Larsen D.P., 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biol., 46, 87–97. [Google Scholar]
  • Liu A.J., Tong S.T.Y. and Goodrich J.A., 2000. Land use as a mitigation strategy for the water-quality impacts of global warming: a scenario analysis on two watersheds in the Ohio River Basin. Environ. Eng. Policy, 2, 65–76. [Google Scholar]
  • McCarron E. and Frydenborg R., 1997. The Florida bioassessment program: an agent for change. Hum. Ecol. Risk Assess., 3, 967–977. [Google Scholar]
  • MOE/NIER, 2006. Study on development of methods for synthetic assessment of water environment, The Ministry of Environment/National Institute of Environmental Research, Korea (in Korean). [Google Scholar]
  • MOE/NIER, 2007. Establishment of monitoring network for survey and evaluation of aquatic ecosystem health, The Ministry of Environment/National Institute of Environmental Research, Korea (in Korean). [Google Scholar]
  • MOE/NIER, 2008. Survey and evaluation of aquatic ecosystem health in Korea, The Ministry of Environment/National Institute of Environmental Research, Korea (in Korean). [Google Scholar]
  • Moerke A.H. and Lamberti G.A., 2006. Scale-dependent influences on water quality, habitat, and fish communities in the streams of the Kalamazoo River Basin, Michigan (USA). Aquat. Sci., 68, 193–205. [Google Scholar]
  • Moore A.A. and Palmer M.A., 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl., 15, 1169–1177. [Google Scholar]
  • Morgan R.P. and Cushman S.F., 2005. Urbanization effects on stream fish assemblages in Maryland, USA. J. N. Am. Benthol. Soc., 24, 643–655. [Google Scholar]
  • National River Authority (NRA), 1992. River Corridor Surveys, NRA, Bristol. [Google Scholar]
  • Nerbonne B.A. and Vondracek B., 2001. Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environ. Manage., 28, 87–99. [Google Scholar]
  • Nielsen L.A. and Johnson D.L., 1983. Fisheries Techniques, American Fisheries Society, Bethesda, MD. [Google Scholar]
  • NIER, 2003. Comprehensive plan of survey and research on development of methods for synthetic assessment of water quality, The National Institute of Environmental Research, Korea (in Korean). [Google Scholar]
  • Nijboer R.C. and Verdonschot P.F.M., 2004. Variable selection for modelling effects of eutrophication on stream and river ecosystems. Ecol. Model., 177, 17–39. [Google Scholar]
  • Nõges P., van de Bund W., Cardoso A.C., Solimini A. and Heiskanen A.-S., 2009. Assessments of the ecological status of European surface waters: a work in progress. Hydrobiologia, 633, 197–211. [Google Scholar]
  • Nordin R.N., 1985. Water Quality Criteria for Nutrients and Algae (Technical Appendix), http://www.elp.gov.bc.ca/wat/wq/BCguidelines/nutrients.html. [Google Scholar]
  • Ode P.R., Hawkins C.P. and Mazor R.D., 2008. Comparability of biological assessments derived from predictive models and multimetric indices of increasing geographic scope. J. N. Am. Benthol. Soc., 27, 967–985. [Google Scholar]
  • Oh Y.N. and Chon T.S., 1991. A study on the benthic macroinvertebrates in the middle reaches of the Paenae stream, a tributary of the Naktong River, Korea. Korean J. Ecol., 14, 345–360 (in Korean). [Google Scholar]
  • Omernik J.M., Abernathy A.R. and Male L.M., 1981. Stream nutrient levels and proximity of agricultural and forest land to streams: some relationships. J. Soil Water, 36, 227–231. [Google Scholar]
  • Osborne L.L. and Wiley M.J., 1988. Empirical relationships between land use/cover and stream water quality in an agricultural watershed. J. Environ. Manage., 26, 9–27. [Google Scholar]
  • Osborne P.E. and Suárez-Seoane S., 2002. Should data be partitioned spatially before building large-scale distribution models? Ecol. Model., 157, 249–259. [CrossRef] [Google Scholar]
  • Otto A., 1995. Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland, Teil 1, Verfahrensentwurf für kleine und mittelgroβe Flieβ gewässer der freien Landschaft im Bereich der Mittelgebrige, des Hügellandes und des Flachlandes, Lanesamt für Wasserwirtschaft Rheinland-Pfalz. [Google Scholar]
  • Paller M.H., 2001. Comparison of fish and macroinvertebrate bioassessments from South Carolina coastal plain streams. Aquat. Ecosyst. Health Manage., 4, 175–186. [CrossRef] [Google Scholar]
  • Passy S.I., Rode R.W., Carlson D.M. and Novak M.A., 2004. Comparative environmental assessment in the studies of benthic diatom, macroinvertebrate, and fish communities. Int. Rev. Hydrobiol., 89, 121–138. [Google Scholar]
  • Patrick R., 1977. Effects of trace metals in the aquatic ecosystem. Am. Sci., 66, 185–191. [Google Scholar]
  • Pearson T. and Rosenberg R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Annu. Rev. Oceanogr. Mar. Biol., 16, 229–311. [Google Scholar]
  • Pont D., Hugueny B., Beier U., Goffaux D., Melcher A., Noble R., Rogers C., Roset N. and Schmutz S., 2006. Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J. Appl. Ecol., 43, 70–80. [Google Scholar]
  • Prygiel J., Whitton B.A. and Bukowska L. (eds.), 1999. Use of algae for monitoring rivers III. In: Proceedings of an International Symposium, Agence de l'Eau Artois-Picardie, Douai Cedex, France, 271 p. [Google Scholar]
  • Richards C., Host G.E. and Arthur J.W., 1993. Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment. Freshwater Biol., 29, 285–294. [Google Scholar]
  • Richards C., Johnson L.B. and Host G.E., 1996. Landscape scale influences on stream habitats and biota. Can. J. Fish Aquat. Sci., 53 (Suppl. I), 295–311. [Google Scholar]
  • Richards C., Haro R.J., Johnson L.B. and Host G.E., 1997. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwater Biol., s37, 219–230. [Google Scholar]
  • Roth N.E., Allan J.D. and Erickson D.L., 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecol., 11, 141–156. [Google Scholar]
  • Roy A.H., Rosemond A.D., Paul M.J., Leigh D.S. and Wallace J.B., 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshwater Biol., 48, 329–346. [Google Scholar]
  • Roy A.H., Freeman M.C., Freeman B.J., Wenger S.J., Ensign W.E. and Meyer J.L., 2005. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. J. N. Am. Benthol. Soc., 24, 656–678. [Google Scholar]
  • Sawyer J.A., Stewart P.M., Mullen M.M., Simon T.P. and Bennett H.H., 2003. Influence of habitat, water quality, and land use on macro-invertebrate and fish assemblages of a southeastern coastal plain watershed, USA. Aquat. Ecosyst. Health Manag., 7, 85–99. [Google Scholar]
  • Schuler T.R., 1994. The importance of imperviousness. Watershed Protect. Tech., 1, 100–111. [Google Scholar]
  • Simon T.P. (ed.), 1999. Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities, CRC Press, Boca Raton, FL, 652 p. [Google Scholar]
  • Simon T.P., 2000. The use of biological criteria as a tool for water resource management. Environ. Sci. Policy, 3, S43–S49. [Google Scholar]
  • Skvortzow B.W., 1929. Fresh-water diatoms from Korea, Japan. Phillippines J. Sci., 38, 283–291. [Google Scholar]
  • Smith A.J., Bode R.W. and Kleppel G.S., 2007. A nutrient biotic index (NBI) for use with benthic macroinvertebrate communities. Ecol. Indic., 7, 371–386. [Google Scholar]
  • Smith R.W., Bergen M., Weisberg S.B., Cadien D., Dankey A., Montagne D., Stull J.K. and Velarde R.G., 2001. Benthic response index for assessing infaunal communities on the mainland shelf of Southern California. Ecol. Appl., 11, 1073–1087. [Google Scholar]
  • Sponseller R.A., Benfield E.F. and Valett H.M., 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol., 46, 1409–1424. [Google Scholar]
  • Šrámek-Hušek R., 1956. Zur biologischen charakteristik der höheren saprobitätsstufen. Arch. Hydrobiol., 51, 376–390. [Google Scholar]
  • Stewart P.M., Scribiallo R. and Simon T.P., 1999. The use of aquatic macrophytes in monitoring and in assessment of biological integrity. In: Gerhardt A. (ed.), Biomonitoring of Polluted Waters – Reviews on Actual Topics, Environmental Science Forum, 96, Trans Tech Publications, Ltd., Uetikon-Zuerich, Switzerland, 275–302. [Google Scholar]
  • Stoddard J.L., Herlihy A.T., Peck D.V., Hughes R.M., Whittier T.R. and Tarquinio E., 2008. A process for creating multimetric indices for large-scale aquatic surveys. J. N. Am. Benthol. Soc., 27, 878–891. [Google Scholar]
  • Swink W.R. and Wilhelm G., 1994. Plants of the Chicago region, 4th edn., Indiana Academy of Science, Indianapolis, IN. [Google Scholar]
  • Thompson J., Taylor M.P., Fryirs K.A. and Brierley G.J., 2001. A geomorphological framework for river characterization and habitat assessment. Mar. Freshwater Ecosyst., 11, 373–389. [Google Scholar]
  • Tong S.T.Y. and Chen W., 2002. Modeling the relationship between land use and surface water quality. J. Environ. Manage., 66, 377–393. [CrossRef] [PubMed] [Google Scholar]
  • Townsend C.R., Dole´dec S., Norris R., Peacock K. and Arbuckle C., 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biol., 48, 768–785. [Google Scholar]
  • Tsuda M., 1964. Biology of Polluted Waters, Hokuryu-kan, Tokyo. [Google Scholar]
  • UNESCO, 2004. Integrated watershed management – Ecohydrology and phytotechnology – Manual, UNESCO Regional Bureau for Science in Europe, Venice, Italy. [Google Scholar]
  • U.S. Environmental Protection Agency (EPA), 1990. Biological Criteria: National Program Guidance for Surface Waters, US EPA, Office of Water Regulations and Standards, Washington, DC, EP-440/5-90-004, April. [Google Scholar]
  • U.S. Environmental Protection Agency (EPA), 2002. Biological assessments and criteria: crucial components of water quality programs, EPA 822-F-02-006, Washington, DC. [Google Scholar]
  • U.S. Geological Survey (USGS), 2002. Revised protocols for sampling algal, invertebrate, and fish communities as part of the national water-quality assessment program, Open-file Report 02-150, Virginia. [Google Scholar]
  • van Dam H., Mertens A. and Sinkeldam J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands J. Aquat. Ecol., 28, 117–133. [CrossRef] [Google Scholar]
  • Waite I.R., Brown L.R., Kennen J.G., May J.T., Cuffney T.F., Orlando J.L. and Jones K.A., 2008. Comparison of watershed disturbance predictive models for stream benthic macroinvertebrates for three distinct ecoregions in western US. Ecol. Indic., 10, 1125–1136. [Google Scholar]
  • Wallace J.B., Eggert S.L., Meyer J.L. and Webster J.R., 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, 277, 102–104. [Google Scholar]
  • Wang L., Lyons J., Kanehl P. and Bannerman R., 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environ. Manage., 28, 255–266. [Google Scholar]
  • Washington H.G., 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Res., 18, 653–694. [Google Scholar]
  • Watanabe T., Asai K. and Houki A., 1990. Numerical simulation of organic pollution in flowing waters. Enc. Env. Control Tech., 4, 251–281. [Google Scholar]
  • Weisberg S.B., Ranasinghe J.A., Dauer D.M., Schaffner L.C., Diaz R.J. and Frithsen J.B., 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries, 20, 149–158. [CrossRef] [Google Scholar]
  • Won D.H., Jun Y.-C., Kwon S.-J., Hwang S.-J., Ahn K.-G. and Lee J.-W., 2006. Development of Korean saprobic index using benthic macroinvertebrates and its application to biological stream environment assessment. J. Korean Sco. Water Qual., 22, 768–783 (in Korean). [Google Scholar]
  • Woodiwiss F.S., 1978. Comparative study of biological-ecological water quality assessment methods. Second practical demonstration, Nottingham (20 Sept. to 1 Oct. 1976), Summary Report, Commission of the European Communities, Environment and Consumer Protection Service. [Google Scholar]
  • Word J.Q., 1978. The infaunal trophic index. Coastal Water Research Project Annual Report, Southern California Coastal Water Research Project, El Segundo, CA, 19–39. [Google Scholar]
  • Word J.Q., 1980. Classification of benthic invertebrates into infaunal trophic index feeding groups, Biennial Report, 1979–1980, Coastal Water Research Project, Los Angeles, CA, 103–121. [Google Scholar]
  • Word J.Q., 1990. The infaunal trophic index, a functional approach to benthic community analyses, Ph.D. Dissertation, University of Washington, Seattle, WA. [Google Scholar]
  • Wui I.S., 1974. The biological estimation of water pollution levels on the benthos fauna of the Yeong-san River. Korean J. Limnol., 7, 29–35 (in Korean). [Google Scholar]
  • Wui I.S., Ra C.H., Choi C.G. and Baik S.K., 1983. Studies on the aquatic insects of the Tamjin River. Korean J. Limnol., 16, 33–52 (in Korean). [Google Scholar]
  • Yeom D.H., An K.-W., Hong Y.P. and Lee S.K., 2000. Assessment of an index of biological integrity (IBI) using fish assemblages in Keumho River, Korea. Korean J. Environ. Biol., 18, 215–226 (in Korean). [Google Scholar]
  • Yoon I.B., Kong D.S. and Ryu J.K., 1992a. Studies on the biological evaluation of water quality by benthic macroinvertebrates (I) – saprobic valency and indicative value. Korean J. Environ. Biol., 10, 24–39 (in Korean). [Google Scholar]
  • Yoon I.B., Kong D.S. and Ryu J.K., 1992b. Studies on the biological evaluation of water quality by benthic macroinvertebrates (II) – effects of environmental factors to community. Korean J. Environ. Biol., 10, 40–55 (in Korean). [Google Scholar]
  • Yoon I.B., Kong D.S. and Ryu J.K., 1992c. Studies on the biological evaluation of water quality by benthic macroinvertebrates (III) – macroscopic simple water quality evaluation. Korean J. Environ. Biol., 10, 77–84 (in Korean). [Google Scholar]
  • Zelinka M. and Marvan P., 1961. Zur Präzisierung der biologischen klassifikation der Reinheid fliessender Gewässer. Arch. Hydrobiol., 57, 389–407. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.