Free Access
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 1, 2010
Page(s) 1 - 7
Published online 10 February 2010
  • APHA, 1998. Standard methods for the examination of water and wastewater, 20th edition, Washington, DC. [Google Scholar]
  • Bade D.L., Carpenter S.R., Cole J.J., Hanson P.C. and Hesslein R.H., 2004. Controls of δ13C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnol. Oceanogr., 49, 1160–1172. [Google Scholar]
  • Bootsma H.A., Hecky R.E., Hesslein R.H. and Turner G.F., 1996. Food partitioning among Lake Malawi nearshore fishes as revealed by stable isotope analyses. Ecology, 77, 1286–1290. [CrossRef] [Google Scholar]
  • Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N. and Smith V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8, 559–568. [Google Scholar]
  • Chapman A.D. and Schelske C.L., 1997. Recent appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida lakes. J. Phycol., 33, 191–195. [Google Scholar]
  • Delwiche C.C. and Steyn P.L., 1970. Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Tech., 4, 929–935. [Google Scholar]
  • Estep M.L.F. and Vigg S., 1985. Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake system, Nevada. Can. J. Fish. Aquat. Sci., 42, 1712–1719. [Google Scholar]
  • Gondwe M.J., Guildford S.J. and Hecky R.E., 2008. Planktonic nitrogen fixation in Lake Malawi/Nyasa. Hydrobiologia, 596, 251–267. [CrossRef] [Google Scholar]
  • Gu B., 2009. Variations and controls of nitrogen stable isotopes in particulate organic matter of lakes. Oecologia, 160, 421–431. [CrossRef] [PubMed] [Google Scholar]
  • Gu B. and Alexander V., 1993. Estimation of N2 fixation based on differences in the natural abundance of 15N among freshwater N2-fixing and non-N2-fixing algae. Oecologia, 96, 43–48. [CrossRef] [PubMed] [Google Scholar]
  • Gu B., Schell D.M. and Alexander V., 1994. Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Can. J. Fish. Aquat. Sci., 51, 1338–1344. [Google Scholar]
  • Gu B., Schelske C.L. and Brenner M., 1996. Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can. J. Fish. Aquat. Sci., 53, 875–883. [Google Scholar]
  • Gu B., Chapman A.D. and Schelske C.L., 2006. Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a soft water eutrophic lake. Limnol. Oceanogr., 51, 2837–2848. [Google Scholar]
  • Gu B., Schelske C.L. and Waters M., submitted. Patterns and controls of carbon stable isotope composition of particulate organic matter in subtropical lakes. Fundam. Appl. Limol. [Google Scholar]
  • Hadas O., Altabet M.A. and Agnihotri R., 2009. Seasonally varying nitrogen isotope biogeochemistry of particulate organic matter in Lake Kinneret, Israel. Limnol. Oceanogr., 54, 75–85. [Google Scholar]
  • Havens K.E., Phlips E.J., Cichra M.F. and Li B., 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshw. Biol., 39, 547–556. [Google Scholar]
  • Havens K.E., Gu B., Fry B. and Kendall C., 2003. Stable isotope food web analysis of a large subtropical lake: Alternative explanations for 15N enrichment of pelagic vs. littoral fisheries. The Scientific World Journal, 3, 613–622. [Google Scholar]
  • Hoering T.C. and Ford H.T., 1960. The isotope effect in the fixation of nitrogen by Azotobacter. J. Amer. Chem. Soc., 82, 376–378. [Google Scholar]
  • Hoyer M.V., Gu B. and Schelske C.L., 1998. Sources of organic carbon in the food webs of two Florida lakes indicated by stable isotopes. In: Jeppesen E.M., Sondergaard M., Sondergaard M. and Christofferson K. (eds.), The structure role of submerged macrophytes in lakes, Springer, Berlin-Heidelberg-New York, 326–330. [Google Scholar]
  • Jäntti H., 2007. The spatial and temporal variation of nitrogen fixation in aquatic environments, Master Thesis, University of Jyväskylä, 46 p. [Google Scholar]
  • Lehmann M.F., Bernasconi S.M., McKenzie J.A., Barbieri A., Simona M. and Veronesi M., 2004. Seasonal variation of the δ13C and δ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: constraints on biogeochemical cycling in a eutrophic lake. Limnol. Oceanogr., 49, 415–429. [Google Scholar]
  • MacGregor B.J., Van Mooy B., Baker B.J., Mellon M., Moisander P.H., Paerl H.W., Zehr J., Hollander D. and Stahl D., 2001. Microbiological, molecular biological and stable isotopic evidence for nitrogen fixation in the open waters of Lake Michigan. Environ. Microbiol., 3, 205–219. [Google Scholar]
  • Montoya J.P. and McCarthy J.J., 1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res., 17, 439–464. [Google Scholar]
  • Mooy B.V., MacGregor B., Hollander D., Nealson K. and Stahl D., 2001. Evidence for tight coupling between active bacteria and particulate organic carbon during seasonal stratification of Lake Michigan. Limnol. Oceanogr., 46, 1202–1208. [Google Scholar]
  • Owen J.S., Mitchell M.J. and Michener R.H., 1999. Stable nitrogen and carbon isotonic composition of seston and sediment in two Adirondack lakes. Can. J. Fish. Aquat. Sci., 56, 2186–2192. [Google Scholar]
  • Owens N.J.P., 1987. Natural variations in 15N in the marine environment. Adv. Mar. Biol., 24, 389–451. [Google Scholar]
  • Patoine A., Graham M.D. and Leavitt P.R., 2006. Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnol. Oceanogr., 51, 1665–1677. [Google Scholar]
  • Peterson B.J. and Fry B., 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst., 18, 293–320. [Google Scholar]
  • Post D.M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718. [CrossRef] [Google Scholar]
  • Savage C., 2005. Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. Ambio, 34, 143–148. [Google Scholar]
  • Syväranta J., Tiirola M. and Jones R.I., 2008. Seasonality in lake pelagic δ15N values: patterns, possible explanations, and implications for food web baseline. Fundam. Appl. Limnol., 172, 255–262. [Google Scholar]
  • Teranes J.L. and Bernasconi S.M., 2000. The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter – a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol. Oceanogr., 45, 801–813. [Google Scholar]
  • Valiela I., Geist M., Mcclelland J. and Tomasky G., 2000. Nitrogen loading from watersheds to estuaries: verification of the Waquoit Bay nitrogen loading model. Biogeochemistry, 49, 277–293. [CrossRef] [Google Scholar]
  • Vander Zanden M.J., Vadeboncoeur Y., Diebel M.W. and Jeppensen E., 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Environ. Sci. Technol., 39, 7509–7515. [Google Scholar]
  • Waser N.A.D., Harrison P.J., Nielsen B., Calvert S.E. and Turpin D.H., 1998. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol. Oceanogr., 43, 215–224. [Google Scholar]
  • Xie Y.X., Xiong Z.Q., Xing G.X., Sun G.Q. and Zhu Z.L., 2007. Assessment of nitrogen pollutant sources in surface waters of Taihu Lake region. Pedosphere, 17, 200–208. [CrossRef] [Google Scholar]
  • Zeng Q.F., Kong F.X., Zhang E.L., Tan X. and Wu X.D., 2008. Seasonality of stable carbon and nitrogen isotopes within the pelagic food web of Taihu Lake. Ann. Limnol. - Int. J. Lim., 44, 55–60. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.