Free Access
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 1, 2010
Page(s) 9 - 19
Published online 10 February 2010
  • Agustí S., 1991. Allometric scaling of light absorption and scattering by phytoplankton cells. Can. J. Fish. Aquat. Sci., 48, 763–767. [CrossRef]
  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. and Lipman D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402. [CrossRef] [PubMed]
  • Becker S., Richl P. and Ernst A., 2007. Seasonal and habitat-related distribution pattern of Synechocccus genotypes in Lake Constance. FEMS Microbiol. Ecol., 62, 64–77. [CrossRef] [PubMed]
  • Bell T. and Kalff J., 2001. The contribution of picoplankton in marine and freshwater system of different trophic status and depth. Limnol. Oceanogr., 46, 1243–1248. [CrossRef]
  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. and Wheeler D.L., 2008. GenBank. Nucleic Acids Res., 36, D25–D30. [CrossRef] [PubMed]
  • Borsodi A.K., Farkas I. and Kurdi P., 1998. Numerical analysis of planktonic and reed biofilm bacterial communities of Lake Fertő (Neusiedlersee, Hungary/Austria). Wat. Res., 32, 1831–1840. [CrossRef]
  • Buczkó K., 1989. About the spatial distribution of the algae and the quantitative development of periphyton in the Hungarian part of Lake Fertő (Neusiedler See). BFB-Bericht, 71, 11–124.
  • Callieri C., 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwat. Rev., 1, 1–28.
  • Carrick H.J. and Schelske C.L., 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol. Oceanogr., 42, 1613–1621.
  • Crosbie N.D., Pöckl M. and Weisse T., 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol., 69, 5716–5721. [CrossRef] [PubMed]
  • Del Negro P., Paoli A., Celussi M., Crevatin E., Valeri A., Larato C. and Fonda Umani S., 2007. Picoplanktonic cyanobacteria in different Adriatic brackish environments. Transit. Waters Bull., 3, 13–16.
  • Dinka M., Ágoston-Szabó E., Berczik Á. and Kutrucz Gy., 2004. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertő/Neusiedler See. Limnologica, 34, 48–56. [CrossRef]
  • Dokulil M., 1979. Optical properties, colour and turbidity. In: Löffler H. (ed.), Neusiedlersee – Limnology of a shallow lake in Central Europe, Dr. W. Junk Publishers, The Hague-Boston-London, 151–162.
  • Dolan J.R., Sall N., Metcalfe A. and Gasser B., 2003. Effects of turbulence on the feeding and growth of a marine oligotrich ciliate. Aquat. Microb. Ecol., 31, 183–192. [CrossRef]
  • Eaton A.D., Clesceri L.S. and Greenberg A.E., 1995. Solids. In: Standard Methods, 19th edn., American Public Health Association, 2-56–2-57.
  • Ernst A., Becker S., Wollenzien U.I. and Postius C., 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria interred from 16S rRNA and ITS-1 sequence analysis. Microbiology (UK), 149, 217–228. [CrossRef]
  • Felföldi T., Somogyi B., Marialigeti K. and Vörös L., 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol., 68, 385–395.
  • G.-Tóth L., V.-Balogh K. and Zánkai N., 1986. Significance and degree of abioseston consumption in the filter-feeder Daphnia galeata Sars. Am. Richard (Cladocera) in Lake Balaton. Arch. Hydrobiol., 106, 45–60.
  • Hart R.C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwat. Biol., 19, 123–139. [CrossRef]
  • Haverkamp T., Acinas S.G., Doeleman M., Stomp M., Huisman J. and Stal L.J., 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol., 10, 174–188. [PubMed]
  • Hepperle D. and Krienitz L., 2001. Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. Int. Rev. Hydrobiol., 86, 269–284. [CrossRef]
  • Herzig A. and Koste W., 1989. The development of Hexathra spp. in a shallow alkaline lake. Hydrobiologia, 186/187, 129–136.
  • Ivanikova N.V., Popels L.C., McKay M.L. and Bullerjahn G.S., 2007. Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl. Environ. Microbiol., 73, 4055–4065. [CrossRef] [PubMed]
  • Jack J.D. and Gilbert J.J., 1993. The effect of suspended clay on ciliate population growth rates. Freshwat. Biol., 29, 385–394. [CrossRef]
  • Jasser I., 1997. The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. Hydrobiologia, 342/343, 87–93.
  • Kimura M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120. [CrossRef] [PubMed]
  • Levine S.N., Zehrer R.F. and Burns C.W., 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biol., 50, 1515–1536. [CrossRef]
  • MacIsaac E.A. and Stockner J.G., 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp P.F., Sherr B.F., Sherr E.B. and Cole J.J. (eds.), Handbook of methods in aquatic microbial ecology, Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, 187–197.
  • Miquelis A., Rougier C. and Pourriot R., 1998. Impact of turbulence and turbidity on the grazing rate of the rotifer Brachionus calyciflorus (Pallas). Hydrobiologia, 386, 203–211. [CrossRef]
  • Mózes A., Présing M. and Vörös L., 2006. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int. Rev. Hydrobiol., 91, 38–50. [CrossRef]
  • Nübel U., Garcia-Pichel F. and Muyzer G., 1997. PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl. Environ. Microbiol., 63, 3327–3332. [PubMed]
  • Padisák J., 1992. Species composition, spatial distribution and the seasonal and interannual dynamics of phytoplankton in brown-water lakes enclosed with reed belts (Neusiedlersee/Fertő; Austria/Hungary). BFB-Bericht, 79, 13–29.
  • Padisák J. and Dokulil M., 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia, 289, 23–42. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Pfand K. and Boenigk J., 2006. Stuck in the mud: suspended sediments as a key issue for survival of chrysomonad flagellates. Aquat. Microb. Ecol., 45, 89–99. [CrossRef]
  • Raven J.A., 1998. The twelfth Transley lecture. Small is beautiful: the picophytoplankton. Funct. Ecol., 12, 503–513. [CrossRef]
  • Robertson B.R., Tezuka N. and Watanabe M.M., 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol., 51, 861–871. [PubMed]
  • Saitou N. and Nei M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425. [PubMed]
  • Sánchez-Baracaldo P., Handley B.A. and Hayes P.K., 2008. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (UK), 154, 3347–3357. [CrossRef]
  • Schönberger M., 1994. Planktonic ciliated protozoa of Neusiedler See (Austria/Hungary) – a comparison between the turbid open lake and a reedless brown-water pond. Marine Microbial Food Webs, 8, 251–263.
  • Sipos R., Székely A.J., Palatinszky M., Révész S., Márialigeti K. and Nikolausz M., 2007. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol. Ecol., 60, 341–350. [CrossRef] [PubMed]
  • Somogyi B., Felföldi T., Vanyovszki J., Ágyi Á., Márialigeti K. and Vörös L., 2009. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat. Ecol., 43, 735–744. [CrossRef]
  • Stockner J.G., 1991. Autotrophic picoplankton in freshwater ecosystems: The view from summit. Int. Rev. Ges. Hydrobiol., 76, 483–492. [CrossRef]
  • Stockner J.G., Callieri C. and Cronberg G., 2000. Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton B.A. and Potts M. (eds.), The ecology of cyanobacteria – Their diversity in time and space, Kluwer Academic Publishers, Dordrecht, London, Boston, 195–231.
  • Szelag-Wasielewska E., 1997. Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia, 342/343, 79–85.
  • Szelag-Wasielewska E., 2003. Phytoplankton community structure in non-stratified lakes of Pomerania (NW Poland). Hydrobiologia, 506/509, 229–236.
  • Tamura K., Dudley J., Nei M. and Kumar S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24, 1596–1599. [CrossRef] [PubMed]
  • Tevanné B.E., 1981. The algal flora of Lake Fertő. Hidrológiai Közlöny, 61, 97–144 [in Hungarian with German summary].
  • Thompson J.D., Higgins D.G. and Gibson T.J., 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680. [CrossRef] [PubMed]
  • Urbach E., Scanlan D.J., Distel D.L., Waterbury J.B. and Chisholm S.W., 1998. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. Mol. Evol., 46, 188–201. [CrossRef] [PubMed]
  • Utermöhl H., 1958. Zur Vervolkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol., 9, 1–38.
  • Vörös L., 1989. On the importance of the picoplankton in Lake Balaton (in Hungarian with English summary). Hidrológiai Közlöny, 69, 321–327.
  • Vörös L., Gulyás P. and Németh J., 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Rev. Ges. Hydrobiol., 76, 617–629. [CrossRef]
  • Vörös L., Callieri C., V.-Balogh K. and Bertoni R., 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia, 369/370, 117–125.
  • Vörös L., Somogyi B. and Boros E., 2008. Birds cause net heterotrophy in shallow lakes. Acta Zool. Hung., 54, 23–34.
  • Wetzel R.G. and Likens G.E., 1991. Limnological Analyses, 2nd edn., Springer-Verlag, New York, 391 p.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.