Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 1, 2010
Page(s) 9 - 19
DOI https://doi.org/10.1051/limn/2010001
Published online 10 February 2010
  • Agustí S., 1991. Allometric scaling of light absorption and scattering by phytoplankton cells. Can. J. Fish. Aquat. Sci., 48, 763–767. [CrossRef] [Google Scholar]
  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. and Lipman D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402. [CrossRef] [PubMed] [Google Scholar]
  • Becker S., Richl P. and Ernst A., 2007. Seasonal and habitat-related distribution pattern of Synechocccus genotypes in Lake Constance. FEMS Microbiol. Ecol., 62, 64–77. [CrossRef] [PubMed] [Google Scholar]
  • Bell T. and Kalff J., 2001. The contribution of picoplankton in marine and freshwater system of different trophic status and depth. Limnol. Oceanogr., 46, 1243–1248. [CrossRef] [Google Scholar]
  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. and Wheeler D.L., 2008. GenBank. Nucleic Acids Res., 36, D25–D30. [CrossRef] [PubMed] [Google Scholar]
  • Borsodi A.K., Farkas I. and Kurdi P., 1998. Numerical analysis of planktonic and reed biofilm bacterial communities of Lake Fertő (Neusiedlersee, Hungary/Austria). Wat. Res., 32, 1831–1840. [CrossRef] [Google Scholar]
  • Buczkó K., 1989. About the spatial distribution of the algae and the quantitative development of periphyton in the Hungarian part of Lake Fertő (Neusiedler See). BFB-Bericht, 71, 11–124. [Google Scholar]
  • Callieri C., 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwat. Rev., 1, 1–28. [Google Scholar]
  • Carrick H.J. and Schelske C.L., 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol. Oceanogr., 42, 1613–1621. [Google Scholar]
  • Crosbie N.D., Pöckl M. and Weisse T., 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol., 69, 5716–5721. [CrossRef] [PubMed] [Google Scholar]
  • Del Negro P., Paoli A., Celussi M., Crevatin E., Valeri A., Larato C. and Fonda Umani S., 2007. Picoplanktonic cyanobacteria in different Adriatic brackish environments. Transit. Waters Bull., 3, 13–16. [Google Scholar]
  • Dinka M., Ágoston-Szabó E., Berczik Á. and Kutrucz Gy., 2004. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertő/Neusiedler See. Limnologica, 34, 48–56. [CrossRef] [Google Scholar]
  • Dokulil M., 1979. Optical properties, colour and turbidity. In: Löffler H. (ed.), Neusiedlersee – Limnology of a shallow lake in Central Europe, Dr. W. Junk Publishers, The Hague-Boston-London, 151–162. [Google Scholar]
  • Dolan J.R., Sall N., Metcalfe A. and Gasser B., 2003. Effects of turbulence on the feeding and growth of a marine oligotrich ciliate. Aquat. Microb. Ecol., 31, 183–192. [CrossRef] [Google Scholar]
  • Eaton A.D., Clesceri L.S. and Greenberg A.E., 1995. Solids. In: Standard Methods, 19th edn., American Public Health Association, 2-56–2-57. [Google Scholar]
  • Ernst A., Becker S., Wollenzien U.I. and Postius C., 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria interred from 16S rRNA and ITS-1 sequence analysis. Microbiology (UK), 149, 217–228. [CrossRef] [Google Scholar]
  • Felföldi T., Somogyi B., Marialigeti K. and Vörös L., 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol., 68, 385–395. [Google Scholar]
  • G.-Tóth L., V.-Balogh K. and Zánkai N., 1986. Significance and degree of abioseston consumption in the filter-feeder Daphnia galeata Sars. Am. Richard (Cladocera) in Lake Balaton. Arch. Hydrobiol., 106, 45–60. [Google Scholar]
  • Hart R.C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwat. Biol., 19, 123–139. [CrossRef] [Google Scholar]
  • Haverkamp T., Acinas S.G., Doeleman M., Stomp M., Huisman J. and Stal L.J., 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol., 10, 174–188. [PubMed] [Google Scholar]
  • Hepperle D. and Krienitz L., 2001. Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. Int. Rev. Hydrobiol., 86, 269–284. [CrossRef] [Google Scholar]
  • Herzig A. and Koste W., 1989. The development of Hexathra spp. in a shallow alkaline lake. Hydrobiologia, 186/187, 129–136. [Google Scholar]
  • Ivanikova N.V., Popels L.C., McKay M.L. and Bullerjahn G.S., 2007. Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl. Environ. Microbiol., 73, 4055–4065. [CrossRef] [PubMed] [Google Scholar]
  • Jack J.D. and Gilbert J.J., 1993. The effect of suspended clay on ciliate population growth rates. Freshwat. Biol., 29, 385–394. [CrossRef] [Google Scholar]
  • Jasser I., 1997. The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. Hydrobiologia, 342/343, 87–93. [Google Scholar]
  • Kimura M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120. [CrossRef] [PubMed] [Google Scholar]
  • Levine S.N., Zehrer R.F. and Burns C.W., 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biol., 50, 1515–1536. [CrossRef] [Google Scholar]
  • MacIsaac E.A. and Stockner J.G., 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp P.F., Sherr B.F., Sherr E.B. and Cole J.J. (eds.), Handbook of methods in aquatic microbial ecology, Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, 187–197. [Google Scholar]
  • Miquelis A., Rougier C. and Pourriot R., 1998. Impact of turbulence and turbidity on the grazing rate of the rotifer Brachionus calyciflorus (Pallas). Hydrobiologia, 386, 203–211. [CrossRef] [Google Scholar]
  • Mózes A., Présing M. and Vörös L., 2006. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int. Rev. Hydrobiol., 91, 38–50. [CrossRef] [Google Scholar]
  • Nübel U., Garcia-Pichel F. and Muyzer G., 1997. PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl. Environ. Microbiol., 63, 3327–3332. [PubMed] [Google Scholar]
  • Padisák J., 1992. Species composition, spatial distribution and the seasonal and interannual dynamics of phytoplankton in brown-water lakes enclosed with reed belts (Neusiedlersee/Fertő; Austria/Hungary). BFB-Bericht, 79, 13–29. [Google Scholar]
  • Padisák J. and Dokulil M., 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia, 289, 23–42. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Pfand K. and Boenigk J., 2006. Stuck in the mud: suspended sediments as a key issue for survival of chrysomonad flagellates. Aquat. Microb. Ecol., 45, 89–99. [CrossRef] [Google Scholar]
  • Raven J.A., 1998. The twelfth Transley lecture. Small is beautiful: the picophytoplankton. Funct. Ecol., 12, 503–513. [CrossRef] [Google Scholar]
  • Robertson B.R., Tezuka N. and Watanabe M.M., 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol., 51, 861–871. [PubMed] [Google Scholar]
  • Saitou N. and Nei M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425. [PubMed] [Google Scholar]
  • Sánchez-Baracaldo P., Handley B.A. and Hayes P.K., 2008. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (UK), 154, 3347–3357. [CrossRef] [Google Scholar]
  • Schönberger M., 1994. Planktonic ciliated protozoa of Neusiedler See (Austria/Hungary) – a comparison between the turbid open lake and a reedless brown-water pond. Marine Microbial Food Webs, 8, 251–263. [Google Scholar]
  • Sipos R., Székely A.J., Palatinszky M., Révész S., Márialigeti K. and Nikolausz M., 2007. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol. Ecol., 60, 341–350. [CrossRef] [PubMed] [Google Scholar]
  • Somogyi B., Felföldi T., Vanyovszki J., Ágyi Á., Márialigeti K. and Vörös L., 2009. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat. Ecol., 43, 735–744. [CrossRef] [Google Scholar]
  • Stockner J.G., 1991. Autotrophic picoplankton in freshwater ecosystems: The view from summit. Int. Rev. Ges. Hydrobiol., 76, 483–492. [CrossRef] [Google Scholar]
  • Stockner J.G., Callieri C. and Cronberg G., 2000. Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton B.A. and Potts M. (eds.), The ecology of cyanobacteria – Their diversity in time and space, Kluwer Academic Publishers, Dordrecht, London, Boston, 195–231. [Google Scholar]
  • Szelag-Wasielewska E., 1997. Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia, 342/343, 79–85. [Google Scholar]
  • Szelag-Wasielewska E., 2003. Phytoplankton community structure in non-stratified lakes of Pomerania (NW Poland). Hydrobiologia, 506/509, 229–236. [Google Scholar]
  • Tamura K., Dudley J., Nei M. and Kumar S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24, 1596–1599. [CrossRef] [PubMed] [Google Scholar]
  • Tevanné B.E., 1981. The algal flora of Lake Fertő. Hidrológiai Közlöny, 61, 97–144 [in Hungarian with German summary]. [Google Scholar]
  • Thompson J.D., Higgins D.G. and Gibson T.J., 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680. [CrossRef] [PubMed] [Google Scholar]
  • Urbach E., Scanlan D.J., Distel D.L., Waterbury J.B. and Chisholm S.W., 1998. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. Mol. Evol., 46, 188–201. [CrossRef] [PubMed] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervolkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol., 9, 1–38. [Google Scholar]
  • Vörös L., 1989. On the importance of the picoplankton in Lake Balaton (in Hungarian with English summary). Hidrológiai Közlöny, 69, 321–327. [Google Scholar]
  • Vörös L., Gulyás P. and Németh J., 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Rev. Ges. Hydrobiol., 76, 617–629. [CrossRef] [Google Scholar]
  • Vörös L., Callieri C., V.-Balogh K. and Bertoni R., 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia, 369/370, 117–125. [Google Scholar]
  • Vörös L., Somogyi B. and Boros E., 2008. Birds cause net heterotrophy in shallow lakes. Acta Zool. Hung., 54, 23–34. [Google Scholar]
  • Wetzel R.G. and Likens G.E., 1991. Limnological Analyses, 2nd edn., Springer-Verlag, New York, 391 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.