Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 3, 2009
Page(s) 157 - 170
DOI https://doi.org/10.1051/limn/2009018
Published online 04 August 2009
  • Anderson N.H. and Cummins K.W., 1979. Influences of diet on life histories of aquatic insects. J. Fish. Res. Board Can., 36, 335–342. [Google Scholar]
  • Anselmetti F.S., Bühler R., Finger D., Girardclos S., Lancini A., Rellstab C. and Sturm M., 2007. Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquat. Sci., 69, 179–198. [Google Scholar]
  • Autorità di Bacino dell'Adige, 2003. Quaderno 3. Progetto pilota per la redazione di un piano stralcio territoriale: il bacino dell'Avisio, Quaderni del Piano di Bacino a cura di Marcello Vittorini, 118 p. [Google Scholar]
  • Baumann P. and Meile T., 2004. Makrozoobenthos und Hydraulik in ausgewählten Querprofilen der Rhone. Wasser Energie Luft, 96, 320–325. [Google Scholar]
  • Blaschke A.P., Steiner K.-H., Schmalfuss R., Gutknecht D. and Sengschmitt D., 2003. Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. Internat. Rev. Hydrobiol., 88, 397–413. [CrossRef] [Google Scholar]
  • Bo T., Fenoglio S., Malacarne G., Pessino M. and Sgariboldi F., 2007. Effects of clogging on stream macroinvertebrates: An experimental approach. Limnologica, 37, 186–192. [Google Scholar]
  • Boon P.J., 1993. Distribution, abundance and development of Trichoptera larvae in the River North Tyne following the commencement of hydroelectric power generation. Reg. Rivers Res. Manage., 8, 211–224. [Google Scholar]
  • Boulton A.J., 2000. The subsurface macrofauna. In: Jones J. and Mulholland P. (eds.), Streams and Ground Waters, Academic Press, New York, 337–361. [Google Scholar]
  • Boulton A.J., 2001. Twixt two worlds: Taxonomic and functional biodiversity at the surface water/groundwater interface. Rec. West. Aust. Mus., 64 (Suppl.), 1–13. [Google Scholar]
  • Boulton A.J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biol., 52, 632–650. [Google Scholar]
  • Boulton A.J. and Stanley E.H., 1995. Hyporheic processes during flooding and drying in a Sonoran Desert stream. II. Faunal dynamics. Arch. Hydrobiol., 134, 27–52. [Google Scholar]
  • Boulton A.J., Findlay S., Marmonier P., Stanley E. and Valett H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 59–81. [Google Scholar]
  • Brittain J.E. and Eikeland T.J., 1988. Invertebrate drift. A review. Hydrobiologia, 166, 77–93. [CrossRef] [Google Scholar]
  • Brunke M., 1999. Colmation and depth filtration within streambeds: retention of particles in hyporheic interstices. Int. Rev. Hydrobiol., 84, 99–117. [Google Scholar]
  • Brunke M. and Gonser T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 1–33. [Google Scholar]
  • Bruno M.C., Maiolini B., Silveri L., Carolli M. and Kerschbaumer G., 2008. Alterations of natural flow in field and flume conditions, Proceedings of the 4th ECRR (European Center for River Restoration) International Conference for River Restoration, Venice, 16–21 June 2008, Book of abstracts, p. 36. [Google Scholar]
  • Bunn S.E. and Arthington A.H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage., 30, 492–507. [Google Scholar]
  • Caissie D., 2006. The thermal regime of rivers: a review. Freshwater Biol., 51, 1389–1406. [CrossRef] [Google Scholar]
  • Campaioli S., Ghetti P.F., Minelli A. and Ruffo S., 1994. Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane, Vol. I, Provincia Autonoma di Trento, 357 p. [Google Scholar]
  • Campaioli S., Ghetti P.F., Minelli A. and Ruffo S., 1999. Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane, Vol. II, Provincia Autonoma di Trento, 127 p. [Google Scholar]
  • Carolli M., Maiolini B., Bruno M.C., Silveri L. and Siviglia A., 2009. Thermopeaking in an hydropower impacted Alpine catchment, Proceedings of the 4th ECRR (European Center for River Restoration) International Conference for River Restoration, Venice, 16–21 June 2008, 789–796. [Google Scholar]
  • Céréghino R. and Lavandier P., 1998a. Influence of hypolimnetic hydropeaking on the distribution and population dynamics of Ephemeroptera in a mountain stream. Freshwat. Biol., 40, 385–399. [CrossRef] [Google Scholar]
  • Céréghino R. and Lavandier P., 1998b. Influence of hydropeaking on the distribution and larval development of the Plecoptera from a mountain stream. Reg. Rivers Res. Manage., 14, 297–309. [Google Scholar]
  • Céréghino R., Cugny P. and Lavandier P., 2002. Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int. Rev. Hydrobiol., 87, 47–60. [CrossRef] [Google Scholar]
  • Céréghino R., Legalle M. and Lavandier P., 2004. Drift and benthic population structure of the mayfly Rhithrogena semicolorata (Heptageniidae) under natural and hydropeaking conditions. Hydrobiologia, 519, 127–133. [CrossRef] [Google Scholar]
  • Claret C., Marmonier P., Dole-Olivier M.-J., Creuzé Des Châtelliers M., Boulton A.J. and Castella E., 1999. A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities. Arch. Hydrobiol., 145, 385–403. [Google Scholar]
  • Clarke K.R., 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol., 18, 117–143. [CrossRef] [Google Scholar]
  • Cobb D.G., Galloway T.D. and Flannagan J.F., 1992. Effects of discharge and substrate stability on density and species composition of stream insects. Can. J. Fish. Aquat. Sci., 49, 1788–1795. [Google Scholar]
  • Crisp D.T. and Robson S., 1979. Some effects of discharge upon the transport of animals and peat in a north Pennine headstream. J. Appl. Ecol., 16, 721–736. [Google Scholar]
  • Cummins K.W., 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am. Midl. Nat., 67, 477–504. [Google Scholar]
  • Cunningham A.B., Anderson C.J. and Bouwer H., 1987. Effects of sediment-laden flow on channel bed clogging. J. Irrig. Drain. E.-ASCE, 113, 106–118. [CrossRef] [Google Scholar]
  • Di Lorenzo T., De Laurentiis P. and Galassi D.M.P., 2003. L'inferenza biologica nella valutazione del grado di protezione naturale di sorgenti carsiche captate. Thal. Sal., 26, 241–248. [Google Scholar]
  • Diplas P. and Parker G., 1992. Deposition and removal of fines in gravel-bed streams. In: Billi P., Hey R.D., Thorne C.R. and Tacconi P. (eds.), Dynamics of Gravel-Bed Rivers, John Wiley and Sons Ltd, New York, 313–329. [Google Scholar]
  • Dole-Olivier M.J., 1998. Surface water-groundwater exchanges in three dimensions on a backwater of the Rhône River. Freshwat. Biol., 40, 93–109. [CrossRef] [Google Scholar]
  • Dole-Olivier M.J. and Marmonier P., 1992. Patch distribution of interstitial communities: prevailing factors. Freshwat. Biol., 27, 177–191. [CrossRef] [Google Scholar]
  • Dole-Olivier M.J., Marmonier P. and Beffy J.L., 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwat. Biol., 37, 257–276. [Google Scholar]
  • Dufrêne M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Dussart B.H., 1967. Les Copépodes des eaux souterraines littorales et continentales d'Europe occidentale. Tome I: Calanoïdes et Harpacticoïdes, N. Boubee et Cie., Paris, 500 p. [Google Scholar]
  • Dussart B.H., 1969. Les Copépodes des eaux continentales d'Europe occidentale. Tome II : Cyclopoïdes et Biologie, N. Boubée et Cie, Paris, 292 p. [Google Scholar]
  • Fette M., Weber C., Peter A. and Wehrli B., 2007. Hydropower production and river rehabilitation: A case study on an alpine river. Environ. Model. Assess., 12, 257–267. [CrossRef] [Google Scholar]
  • Fochetti R., Ravizza C.A. and Tierno De Figueroa J.M., 2009. Plecoptera, Vol. 43: Fauna d'Italia, Calderini, Bologna, 536 p. [Google Scholar]
  • Fowler R.T. and Death R.G., 2001. The effect of environmental stability on hyporheic community structure. Hydrobiologia, 445, 85–95. [CrossRef] [Google Scholar]
  • Fowler R.T. and Scarsbrook M.E., 2002. Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. New Zeal. J. Mar. Fresh., 36, 471–482. [CrossRef] [Google Scholar]
  • Friedl G., Teodoru C. and Wehrli B., 2004. Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? Biogeochemistry, 68, 21–32. [Google Scholar]
  • Gayraud S. and Philippe M., 2001. Does subsurface interstitial space influence general characteristics and features and morphological traits of benthic macroinvertebrate communities in streams? Arch. Hydrobiol., 151, 667–686. [Google Scholar]
  • Gayraud S., Philippe M. and Maridet L., 2000. The response of benthic macroinvertebrates to artificial disturbance: drift or vertical movement in the gravel bed of two Sub-Alpine streams? Arch. Hydrobiol., 147, 431–446. [Google Scholar]
  • Gibbins C.N., Vericat D., Batalla R.J. and Gomez C.M., 2007a. Shaking and moving: low rates of sediment transport trigger mass drift of stream invertebrates. Can. J. Fish. Aquat. Sci., 64, 1–5. [Google Scholar]
  • Gibbins C.N., Vericat D. and Batalla R.J., 2007b. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshwat. Biol., 52, 2369–2384. [Google Scholar]
  • Gibert J., 1991. Groundwater systems and their boundaries: Conceptual framework and prospects in groundwater ecology. Verh. Internat. Verein. Limnol., 24, 1605–1608. [Google Scholar]
  • Gibert J., Dole-Olivier M.-J., Marmonier P. and Vervier P., 1990. Surface water-groundwater ecotones. In: Naiman R.J.H. and Décamps H. (eds.), The ecology and management of aquatic-terrestrial ecotones, UNESCO and The Parthenon Publishing Group, London, England, 199–225. [Google Scholar]
  • Gibert J., Stanford J., Dole-Olivier M.-J. and Ward J.V., 1994. Basic attributes of ground water ecosystems and prospects for research. In: Gibert J., Danielopol D.L. and Stanford J. (eds.), Ground Water Ecology, Academic Press, San Diego, 7–40. [Google Scholar]
  • Gore J.A., Nestler J.M. and Layzer J.B., 1989. Instream flow predictions and management options for biota affected by peakingpower hydroelectric operations. Reg. Rivers Res. Manage., 3, 35–48. [Google Scholar]
  • Gore J.A., Niemada S., Resh V.H. and Statzner B., 1994. Near substrate hydraulic conditions under artificial floods from peaking hydropower operations: a preliminary analysis of disturbance intensity and duration. Reg. Rivers Res. Manage., 9, 15–34. [Google Scholar]
  • Grimm N.B., Valett H.M., Stanley E.H. and Fisher S.G., 1991. Contribution of the hyporheic zone to stability of an arid-land stream. Verh. Int. Ver. Theoret. Angew. Limnol., 24, 1595–1599. [Google Scholar]
  • Hakenkamp C.C. and Palmer M.A., 2000. The ecology of hyporheic meiofauna. In: Jones J.B. and Mulholland P.J. (eds.), Streams and Ground Waters, Academic Press, San Diego, 307–336. [Google Scholar]
  • Hancock P., 2002. Human impacts on the stream-groundwater exchange zone. Environ. Manage., 29, 761–781. [Google Scholar]
  • Hill M.O. and Gauch H.G., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42, 47–58. [CrossRef] [Google Scholar]
  • Humborg C., Conley D.J., Rahm L., Wulff F., Cociasu A. and Ittekkot V., 2000. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50. [Google Scholar]
  • Imbert J.B. and Perry J.A., 2000. Drift and benthic invertebrate responses to stepwise and abrupt increases in non-scouring flow. Hydrobiologia, 436, 191–208. [CrossRef] [Google Scholar]
  • Irvine J.R., 1985. Effects of successive flow perturbations on stream invertebrates. Can. J. Fish. Aquat. Sci., 42, 1922–1927. [Google Scholar]
  • Jakob C., Robinson C.T. and Uehlinger U., 2003. Longitudinal effects of experimental floods on stream benthos downstream from a large dam. Aquat. Sci., 65, 223–231. [CrossRef] [Google Scholar]
  • Jaun L., Finger D., Zeh M., Schurter M. and West A., 2007. Effects of upstream hydropower operation and oligotrophication on the light regime of a turbid peri-alpine lake. Aquat. Sci., 69, 212–226. [Google Scholar]
  • Karaytug S., 1999. Copepoda: Cyclopoida. Genera Paracyclops, Ochridacyclops and Key to the Eucyclopinae – Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Dumont H.J.F. (ed.), SPB Academic Publishing, The Netherlands, The Hague, 14, 1–224. [Google Scholar]
  • Lancaster J. and Belyea L.R., 1997. Nested hierarchies and scale-dependence of flow refugium use. J. N. Am. Benthol. Soc., 16, 221–238. [CrossRef] [Google Scholar]
  • Liebig H., Céréghino R., Lim P., Belaud A. and Lek S., 1999. Impact of hydropeaking on the abundance of juvenile brown trout in a Pyrenean stream. Arch. Hydrobiol., 144, 439–454. [Google Scholar]
  • Lock K. and Goethals P.L.M., 2008. Distribution and ecology of the stoneflies (Plecoptera) of Flanders (Belgium). Ann. Limnol. - Int. J. Lim., 44, 203–213. [Google Scholar]
  • Loizeau J.L. and Dominik J., 2000. Evolution of the upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquat. Sci., 62, 54–67. [Google Scholar]
  • Marchant R., 1988. Vertical distribution of benthic invertebrates in the bed of the Thomson River, Victoria. Aust. J. Mar. Fresh. Res., 39, 775–784. [Google Scholar]
  • Maridet L., Philippe M., Wasson J.G. and Mathieu J., 1996. Spatial and temporal distribution of macroinvertebrates and trophic variables within the bed sediment of three streams differing by their morphology and riparian vegetation. Arch. Hydrobiol., 136, 41–64. [Google Scholar]
  • Marmonier P., 1986. Spatial distribution and temporal evolution of Gammarus fossarum, Niphargus sp. (Amphipoda) and Proasellus slavus (Isopoda) in the Seebach sediments (Lunz, Austria). Jahresber. Biol. Stn. Lunz, 8, 40–54. [Google Scholar]
  • Marmonier P., Vervier P., Gibert J. and Dole-Olivier M.-J., 1993. Biodiversity in ground waters. TREE, 8, 392–395. [Google Scholar]
  • McCune B. and Mefford M.J., 1999. Multivariate Analysis of Ecological Data Version 4.20, MjM Software, Gleneden Beach, Oregon, USA. [Google Scholar]
  • Moog O., 1993. Quantification of daily peak hydropower effects on aquatic fauna and management to minimize environmental impacts. Regul. River., 8, 5–14. [Google Scholar]
  • Palmer M.A., Bely A.E. and Berg K.E., 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia, 89, 182–194. [PubMed] [Google Scholar]
  • Palmer M.A., Arensburger P., Martin A.P. and Denman D.W., 1996. Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia, 105, 247–257. [PubMed] [Google Scholar]
  • PASCALIS, 2001. Protocols for the ASsessment and Conservation of Aquatic Life In the Subsurface, Sampling Manual for the Assessment of Regional Groundwater Biodiversity, Malard F. (ed.). Available at http://serv-umr5023.univ-lyon1.fr/~pascalis/results/samplingmanual.html. [Google Scholar]
  • Pesce G.L. and Galassi D.M.P., 1987. New or rare species of Diacyclops Kiefer, 1927 (Copepoda, Cyclopoida) from different groundwater habitats in Italy. Hydrobiologia, 148, 103–144. [CrossRef] [Google Scholar]
  • Picazo J. and Ocana A., 1991. Distribution of nematode orders in a river subjected to pollution: the Monachil River (Granada, Spain). Limnetica, 7, 11–24. [Google Scholar]
  • Pielou E.C., 1969. An Introduction to Mathematical Ecology, Wiley, New York, 286 p. [Google Scholar]
  • Preece R.M. and Jones H.A., 2002. The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. River Res. Appl., 18, 397–414. [CrossRef] [Google Scholar]
  • PRIMER-E Ltd., 2006. PRIMER 6: Plymouth Routines In Multivariate Ecological Research. [Google Scholar]
  • Provincia Autonoma di Trento, 2006. Piano Generale di Utilizzazione delle Acque Pubbliche. http://www.pguap.provincia.tn.it/PGUAP/. [Google Scholar]
  • Robertson A.L., Lancaster J. and Hildrew A.G., 1995. Stream hydraulics and the distribution of microcrustacea – a role for refugia. Freshwat. Biol., 33, 469–484. [Google Scholar]
  • Robertson A.L., Lancaster J., Belyea L.R. and Hildrew A.G., 1997. Hydraulic habitat and the assemblage structure of stream benthic microcrustacea. J. N. Am. Benthol. Soc., 16, 562–575. [CrossRef] [Google Scholar]
  • Sanders H., 1968. Marine benthic diversity: a comparative study. Am. Nat., 102, 243–282. [CrossRef] [Google Scholar]
  • Schälchli U., 1992. The clogging of coarse gravel river beds by fine sediment. Hydrobiologia, 235/236, 189–197. [Google Scholar]
  • Schmid P.E. and Schmid-Araya J.M., 1997. Predation on meiobenthic assemblages: resource use of a tanypod guild (Chironomidae, Diptera) in a gravel stream. Freshwat. Biol., 38, 67–91. [Google Scholar]
  • Schmid-Araya J.M. and Schmid P.E., 2000. Trophic relationships: integrating meiofauna into a realistic benthic food web. Freshwat. Biol., 44, 149–163. [Google Scholar]
  • Schwoerbel J., 1962. Hyporheische Besiedlung geröllführender Hochgebirsbäche mit gewebter Stromsohle. Die Naturwissenschaften, 49, 67. [CrossRef] [Google Scholar]
  • Silver P., Palmer M.A., Swan C.M. and Wooster D., 2002. The small scale ecology of freshwater meiofauna. In: Rundle S.D., Robertson A.L. and Schmid-Araya J.M. (eds.), Freshwater Meiofauna: Biology and Ecology, Backhuys, Leiden, The Netherlands, 217–239. [Google Scholar]
  • Siviglia A., Salvaro M., Zolezzi G., Carolli M., Bruno M.C. and Maiolini B., 2009. Field observations of thermopeaking in Alpine streams, Proceedings of the 7th International Symposium on Ecohydraulics, Concepcion, Chile, ISE-1A4-FRB3. [Google Scholar]
  • Stanford J.A. and Gaufin A.R., 1974. Hyporheic communities of two Montana rivers. Science, 185, 700–702. [CrossRef] [PubMed] [Google Scholar]
  • StatSoft Inc., 2008. STATISTICA (data analysis software system), version 8.1. www.stasoft.com. [Google Scholar]
  • Stoch F., 1998. Moraria alpina n. sp. and redescription of Moraria radovnae Brancelj 1988, new rank, from Italian and Slovenian Alps (Crustacea, Copepoda, Harpacticoida). St. Trent. Sc. Nat. - Acta Biologica, 73, 135–145. [Google Scholar]
  • Stoch F., 2000–2006. CKmap for Windows, Version 5.3, Ministry for Environment, Territory and Sea, Nature Protection Directorate. http://ckmap.faunaitalia.it. [Google Scholar]
  • Strayer D.L., 1994. Limits to biological sitribution. In: Gibert J., Danielopol D.L. and Stanford J. (eds.), Ground Water Ecology, Academic Press, San Diego, 287–310. [Google Scholar]
  • Strayer D.L., May S.E., Nielsen P., Wolheim W. and Hausam S., 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch. Hydrobiol., 140, 131–144. [Google Scholar]
  • Townsend C.R. and Hildrew A.G., 1994. Species traits in relation to a habitat templet for river systems. Freshwat. Biol., 31, 265–276. [CrossRef] [Google Scholar]
  • Townsend C.R., Scarsbrook M.R. and Doledec S., 1997. The intermediate disturbance hypothesis, refugia and biodiversity in streams. Limnol. Oceanogr., 42, 938–949. [Google Scholar]
  • Troelstrup N.H. and Hergenrader G.L., 1990. Effect of hydropower peaking flow fluctuations on community structure and feeding guilds of invertebrates colonizing artificial substrates in a large impounded river. Hydrobiologia, 199, 217–228. [CrossRef] [Google Scholar]
  • Ward J.V., 1992. Aquatic Insect Ecology. Vol. 1: Biology and Habitat, Wiley, New York, 438 p. [Google Scholar]
  • Ward J.V., 1994. The structure and dynamics of lotic ecosystems. In: Margalef R. (ed.), Limnology Now: A Paradigm of Planetary Problems, Elsevier Science, Amsterdam, 195–218. [Google Scholar]
  • Williams D.D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. In: Resh V.H. and Rosenberg D.M. (eds.), The ecology of aquatic insects, Praeger, New York, 430–455; Chapman & Hall, London, 195–223. [Google Scholar]
  • Williams D.D. and Hynes H.B.N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol., 4, 233–256. [Google Scholar]
  • Wong M. and Parker G., 2006. One-dimensional modeling of bed evolution in a gravel bed river subject to a cycled flood hydrograph. J. Geophys. Res., 111, F03018. [CrossRef] [Google Scholar]
  • Wüest A., Moosmann L. and Friedl G., 2002. Alpine hydroelectric power plants and their “long-range effects” on downstream waters. EAWAG news, 55e, 18–20. [Google Scholar]
  • Zolezzi G., Bellin A., Bruno M.C., Maiolini B. and Siviglia A., to appear. Assessing hydrological alterations at multiple temporal scales: Adige River, Italy. Water Resour. Res. [Google Scholar]
  • Zullini A., 1976. Nematodes as indicators of river pollution. Nematol. Medit., 4, 13–22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.