Free Access
Ann. Limnol. - Int. J. Lim.
Volume 45, Number 1, 2009
Page(s) 11 - 21
Published online 03 April 2009
  • Agren G.I., 2004. The C:N:P stoichiometry of autotrophs - theory and observations. Ecol. Lett., 7, 185-191. [CrossRef] [Google Scholar]
  • Andersen T. and Hessen D.O., 1991. Carbon, nitrogen and phosphorus content of freshwater zooplankton. Limnol. Oceanogr., 36, 807-813. [CrossRef] [Google Scholar]
  • Arrigo K.R., 2005. Marine microorganisms and global nutrient cycles. Nature, 437, 349-355. [CrossRef] [PubMed] [Google Scholar]
  • Attayde J.L. and Hansson L.-A., 1999. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia, 121, 47-54. [CrossRef] [PubMed] [Google Scholar]
  • Attayde J.L. and Hansson L.-A., 2001. Fish-mediated nutrient recycling and the trophic cascade in lakes. Can. J. Fish. Aqua. Sci., 58, 1924-1931. [CrossRef] [Google Scholar]
  • Batjakas I.E., Edgar R.K. and Kaufman L.S., 1997. Comparative feeding efficiency of indigenous and introduced phytoplanktivores from Lake Victoria: experimental studies on Oreochromis esculentus and Oreochromis niloticus. Hydrobiologia, 347, 75-82. [CrossRef] [Google Scholar]
  • Bertolo A., Lacroix G. and Lescher-Moutoué F., 1999a. Scaling food chains in aquatic mesocosms: do the effects of depth override the effects of planktivory?. Oecologia, 121, 55-65. [CrossRef] [PubMed] [Google Scholar]
  • Bertolo A., Lacroix G., Lescher-Moutoué F. and Sala S., 1999b. Effects of physical refuges on fish-plankton interactions. Freshwat. Biol., 41, 795-808. [CrossRef] [Google Scholar]
  • Bertolo A., Lacroix G., Lescher-Moutoué F. and Cardinal-Legrand C., 2000. Plankton dynamics in planktivore- and piscivore-dominated mesocosms. Arch. Hydrobiol., 147, 327-349. [Google Scholar]
  • Brett M.T. and Goldman C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 7723-7726. [Google Scholar]
  • Carpenter S.R. and Kitchell J.F. (eds.), 1993. The Trophic Cascade in Lakes, Cambridge University Press, Cambridge, UK, 385 p. [Google Scholar]
  • Danger M., Leflaive J., Oumarou C., Ten-Hage L. and Lacroix G., 2007a. Control of phytoplankton-bacteria interactions by stoichiometric constraints. Oikos, 116, 1079-1086. [Google Scholar]
  • Danger M., Oumarou C., Benest D. and Lacroix G., 2007b. Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct. Ecol., 21, 202-210. [CrossRef] [Google Scholar]
  • Danger M., Lacroix G., Oumarou C., Benest D. and Mériguet J., 2008. Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: A mesocosm study. Freshwat. Biol., 53, 2089-2100. [CrossRef] [Google Scholar]
  • Dantas M.C. and Attayde J.L., 2007. Nitrogen and phosphorus content of some temperate and tropical freshwater fishes. J. Fish Biol., 70, 100-108. [CrossRef] [Google Scholar]
  • Downing J.A., Osenberg C.W. and Sarnelle O., 1999. Meta-analysis of marine nutrient-enrichment experiments: variation in the magnitude of nutrient limitation. Ecology, 80, 1157-1167. [CrossRef] [Google Scholar]
  • Elrifi I.R. and Turpin D.H., 1985. Steady-state luxury consumption and the concept of optimum nutrient ratios: A study with phosphate and nitrate limited Selenastrum minutum (Chlorophyta). J. Phycol., 21, 592-602. [CrossRef] [Google Scholar]
  • Elser J.J. and Urabe J., 1999. The stoichiometry of consumer-driven nutrient cycling: theory, observations, and consequences. Ecology, 80, 735-751. [CrossRef] [Google Scholar]
  • Elser J.J., Dobberfuhl D., Mackay N.A. and Schampel J.H., 1996. Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience, 46, 674-684. [CrossRef] [Google Scholar]
  • Elser J.J., Sterner R.W., Galford A.E., Chrzanowski T.H., Findlay D.L., Mills K.H., Paterson M.J., Stainton M.P. and Schindler D.W., 2000. Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems, 3, 293-307. [CrossRef] [Google Scholar]
  • Fernando C.H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia, 272, 105-123. [CrossRef] [Google Scholar]
  • Figueredo C.C. and Giani A., 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwat. Biol., 50, 1391-1403. [Google Scholar]
  • Gillooly J.F. and Dodson S.I., 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnol. Oceanogr., 45, 22-30. [CrossRef] [Google Scholar]
  • Gliwicz Z.M., 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia, 272, 201-210. [Google Scholar]
  • Griffiths D., 2006. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshwat. Fish, 15, 86-95. [Google Scholar]
  • Hendrixson H.A., Sterner R.W. and Kay A.D., 2007. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish Biol., 70, 121-140. [CrossRef] [Google Scholar]
  • Jeppesen E., Søndergaard M., Mazzeo N., Meerhoff M., Branco C.C., Huszar V. and Scasso F., 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In: Reddy V. (ed.), Tropical eutrophic lakes: their restoration and management, Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi and Science Publishers Inc., New Hampshire, USA, 351-376. [Google Scholar]
  • Kâ S., 2006. Communautés zooplanctoniques de deux lacs tropicaux (lac de Guiers et réservoir de Dakar Bango, Sénégal): relations avec les facteurs environnementaux, le phytoplancton et les efflorescences cyanobactériennes. Thèse de l'Université d'Aix-Marseille 1, Sciences de l'Environnement, 212+127 pp. (Two volumes). [Google Scholar]
  • Kraft C.E., 1993. Phosphorus regeneration by Lake Michigan alewives in the mid-1970s. Trans. Am. Fish. Soc., 122, 749-755. [CrossRef] [Google Scholar]
  • Lacroix G. and Lescher-Moutoué F., 1991. Interaction effects of nutrient loading and density of young-of-the-year cyprinids on eutrophication in a shallow lake: an experimental mesocosm study. Mem. Ist. Ital. Idrobiol., 48, 53-73. [Google Scholar]
  • Lacroix G., Boët P., Garnier J., Lescher-Moutoué F., Pourriot R. and Testard P., 1989. Factors controlling the planktonic community in the shallow lake of Créteil, France. Int. Revue Ges. Hydrobiol., 74, 353-370. [CrossRef] [Google Scholar]
  • Lacroix G., Lescher-Moutoué F. and Pourriot R., 1996. Trophic interactions, nutrient supply, and structure of freshwater pelagic food webs. In: Hochberg M., Clobert J. and Barbault R. (eds.), Aspects in the Genesis and Maintenance of Biological Diversity, Oxford Univ. Press, Oxford, UK, 162-179. [Google Scholar]
  • Lazzaro X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verh. Internat. Verein. Limnol., 26, 719-730. [Google Scholar]
  • Lazzaro X., Bouvy M., Ribeiro-Filho A., Oliviera V.S., Sales L.T., Vasconcelos A.R.M. and Mata M.R., 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs?. Freshwat. Biol., 48, 649-668. [Google Scholar]
  • Lewis W.M. Jr., 1996. Tropical lakes: how latitude makes a difference. In: Schiemer F. and Boland K.T. (eds.), Perspectives in Tropical Limnology, SPB Academic Publishers, Amsterdam, The Netherlands, 43-64. [Google Scholar]
  • Lewis W.M Jr., 2002. Causes for the high frequency of nitrogen limitation in tropical lakes. Verh. Internat. Verein. Limnol., 28, 210-213. [Google Scholar]
  • Nilssen J.P., 1984. Tropical lakes-functionnal ecology and future development: the need for a process-orientated approach. Hydrobiologia, 113, 231-242. [CrossRef] [Google Scholar]
  • Okun N., Brasil J., Attayde J.L. and Costa I.A.S., 2008. Omnivory does not prevent trophic cascades in pelagic food webs. Freshwat. Biol., 53, 129-138. [Google Scholar]
  • Pinel-Alloul B., Mazumder A., Lacroix G. and Lazzaro X., 1998. Les réseaux trophiques lacustres: structure, fonctionnement, interactions et variations spatio-temporelles. Rev. Sci. Eau, 11, 163-197. [Google Scholar]
  • Polis G.A., 1999. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 86, 3-15. [CrossRef] [Google Scholar]
  • Polis G.A., Sears A.L.W., Huxel G.R. and Strong D.R., 2000. When is a trophic cascade a trophic cascade?. TREE, 15, 473-475. [Google Scholar]
  • Rhee G.-V., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr., 23, 10-25. [CrossRef] [Google Scholar]
  • Rondel C., Arfi R., Corbin C., Le Bihan F., Ndour E.H. and Lazzaro X., 2008. A cyanobacterial bloom prevents fish trophic cascades. Freshwat. Biol., 53, 637-651. [CrossRef] [Google Scholar]
  • Roozen F.C.J.M., Lurling M., Vlek H., Kraan E.A.J.V.P., Ibelings B.W. and Scheffer M., 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwat. Biol., 52, 977-987. [Google Scholar]
  • Ryding S.O. and Rast W. (eds.), 1989. The Control of Eutrophication of Lakes and Reservoirs, UNESCO, Man and the Biosphere Series, Vol. 1, Parthenon Publishing, Paris, 314 p. [Google Scholar]
  • Sarnelle O. and Knapp R.A., 2005. Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes. Limnol. Oceanogr., 50, 2032-2042. [CrossRef] [Google Scholar]
  • Schaefer S.C. and Alber M., 2007. Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry, 85, 333-346. [CrossRef] [Google Scholar]
  • Schindler D.E., 1992. Nutrient regeneration by Sockeye Salmon (Oncorhynchus nerka) fry and subsequent effects on zooplankton and phytoplankton. Can. J. Fish. Aquat. Sci., 49, 2498-2506. [CrossRef] [Google Scholar]
  • Schindler D.W., 1977. Evolution of phosphorus limitation in lakes. Science, 195, 260-262. [CrossRef] [PubMed] [Google Scholar]
  • Schmitz O.J., Hambäck P.A. and Bekerman A.P., 2000. Trophic cascades in terrestrial systems: A review of the effects of carnivore removals on plants. Am. Nat., 155, 141-153. [CrossRef] [PubMed] [Google Scholar]
  • Sereda J.M., Hudson J.J., Taylor W.D. and Demers E., 2008. Fish as sources and sinks of nutrients in lakes. Freshwat. Biol., 53, 278-289. [Google Scholar]
  • Starling F., Lazzaro X., Cavalcanti C. and Moreira R., 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwat. Biol., 47, 2443-2452. [CrossRef] [Google Scholar]
  • Sterner R.W. and Elser J.J. (eds.), 2002. Ecological stoichiometry: The biology of elements from molecules to biosphere, Princeton University Press, Princeton, NJ, USA, 439 p. [Google Scholar]
  • Strong D.R., 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747-754. [CrossRef] [Google Scholar]
  • Talling J.F. and Lemoalle J., 1998. Ecological Dynamics of Tropical Inland Waters, Cambridge University Press, Cambridge, 451 p. [Google Scholar]
  • Torres L.E. and Vanni M.J., 2007. Stoichiometricy of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos, 116, 259-270. [CrossRef] [Google Scholar]
  • van Leeuwen E., Lacerot G., van Nes E.H., Hemerik L. and Scheffer M., 2007. Reduced top-down control of phytoplankton in warmer climates can be explained by continuous fish reproduction. Ecol. Model., 206, 205-212. [CrossRef] [Google Scholar]
  • Vanni M.J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst., 33, 341-370. [Google Scholar]
  • Vanni M.J. and Layne C.D., 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology, 78, 21-40. [Google Scholar]
  • Vanni M.J., Flecker A.S., Hood J.M. and Headworth J.L., 2002. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol. Lett., 5, 285-293. [CrossRef] [Google Scholar]
  • Vanni M.J., Bowling A.M., Dickman E.M., Hale R.S., Higgins K.A., Horgan M.J., Knoll L.B., Renwick W.H. and Stein R.A., 2006. Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology, 87, 1696-1709. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.