Free Access
Ann. Limnol. - Int. J. Lim.
Volume 47, Number 1, 2011
Page(s) 11 - 19
Published online 24 December 2010
  • American Public Health Association, 1999. Standard methods for the examination of water and wastewater, 20th edn., Clesceri L.S, Greenberg A.E and Eaton A.D. (eds.), American Public Health Association, Washington, DC. [Google Scholar]
  • Anderson K.L., Whitlock J.E. and Harwood V.J., 2005. Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl. Environ. Microbiol., 71, 3041–3048. [CrossRef] [PubMed] [Google Scholar]
  • Benham B.L., Baffaut C., Zeckoski R.W., Mankin K.R., Pachepsky Y.A., Sadeghi A.M., Brannan K.M., Soupir M.L. and Habersack M.J., 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. T. ASABE, 49, 987–1002. [Google Scholar]
  • Beversdorf L.J., Bornstein-Forst S.M. and McLellan S.L., 2007. The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off. J. Appl. Microbiol., 102, 1372–1381. [CrossRef] [PubMed] [Google Scholar]
  • Bouteleux C., Saby S., Tozza D., Cavard J., Lahoussine V., Hartemann P. and Mathieu L., 2005. Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals. Appl. Environ. Microbiol., 71, 734–740. [CrossRef] [PubMed] [Google Scholar]
  • Brettar I. and Höfle M.G., 1992. Influence of ecosystematic factors on survival of Escherichia coli after large-scale release into lake water mesocosms. Appl. Environ. Microbiol., 58, 2201–2210. [PubMed] [Google Scholar]
  • Canale R.P., Auer M.T., Owens E.M., Heidtke T.M. and Effler S.W., 1993. Modeling fecal-coliform bacteria. 2. Model development and application. Water Res., 27, 703–714. [CrossRef] [Google Scholar]
  • Carlucci A.F. and Pramer P., 1960a. An evaluation of factors affecting the survival of Escherichia coli in sea water: III. Antibiotics. Appl. Environ. Microbiol., 8, 251–254. [Google Scholar]
  • Carlucci A.F. and Pramer P., 1960b. An evaluation of factors affecting the survival of Escherichia coli in sea water: IV. Bacteriophages. Appl. Environ. Microbiol., 8, 254–256. [Google Scholar]
  • Collins R. and Rutherford K., 2004. Modelling bacterial water quality in streams draining pastoral land. Water Res., 38, 700–712. [CrossRef] [PubMed] [Google Scholar]
  • Cook K.L. and Bolster C.H., 2007. Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. J. Appl. Microbiol., 103, 573–583. [CrossRef] [PubMed] [Google Scholar]
  • Craig D.L., Fallowfield H.J. and Cromar N.J., 2004. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J. Appl. Microbiol., 96, 922–930. [CrossRef] [PubMed] [Google Scholar]
  • Davis R.K., Hamilton S. and Van Brahana J., 2005. Escherichia coli survival in mantled karst springs and streams, northwest Arkansas Ozarks, USA. J. Am. Water Resour. Assoc., 41, 1279–1287. [CrossRef] [Google Scholar]
  • Dufour A.P., 1984. EPA health effects criteria for fresh recreational waters, United States Environmental Protection Agency, Research Triangle Park, NC. [Google Scholar]
  • Environment Canada, 2007. National climate data and information archive, Environment Canada, Ottawa, ON. [Google Scholar]
  • Faust M.A., Aotaky A.E. and Hargadon M.T., 1975. Effect of physical parameters on the in situ survival of Escherichia coli MC 6 in an estuarine environment. J. Appl. Microbiol., 30, 800–806. [Google Scholar]
  • Flint K.P., 1987. The long-term survival of Escherichia coli in river water. J. Appl. Bacteriol., 63, 261–270. [PubMed] [Google Scholar]
  • Haas C.N., Rose J.B. and Gerba C.P., 1999. Quantitative Microbial Risk Assessment, John Wiley and Sons, Inc., New York, NY. [Google Scholar]
  • Ishii S. and Sadowsky M.J., 2008. Escherichia coli in the environment: implications for water quality and human health. Microbes Environ., 23, 101–108. [CrossRef] [PubMed] [Google Scholar]
  • Ishii S., Ksoll W.B., Hicks R.E. and Sadowsky M.J., 2006. Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl. Environ. Microbiol., 72, 612–621. [CrossRef] [PubMed] [Google Scholar]
  • Ishii S., Hansen D.L., Hicks R.E. and Sadowsky M.J., 2007. Beach sand and sediments are temporal sinks and sources of Escherichia coli in Lake Superior. Environ. Sci. Technol., 41, 2203–2209. [CrossRef] [PubMed] [Google Scholar]
  • Johnson J.Y.M., Thomas J.E., Graham T.A., Townshend I., Byrne J., Selinger L.B. and Gannon V.P.J., 2003. Prevalence of Escherichia coli O157:H7 and Salmonella spp. in surface waters of southern Alberta and its relation to manure source. Can. J. Microbiol., 49, 326–335. [CrossRef] [PubMed] [Google Scholar]
  • Kashefipour S.M., Lin B. and Falconer R.A., 2002. Dynamic modelling of bacterial concentrations in coastal waters: effects of solar radiation on decay. Adv. Hydraul. Water Eng., 1–2, 993–998. [CrossRef] [Google Scholar]
  • Leclerc H., Mossel D.A.A., Edberg S.C. and Struijk C.B., 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu. Rev. Microbiol., 55, 201–234. [CrossRef] [PubMed] [Google Scholar]
  • Marshall K.C., 1968. Interaction between colloidal montmorillonite and cells of Rhizobium species with different inorganic surfaces. Biochim. Biophys. Acta, 156, 179–186. [PubMed] [Google Scholar]
  • McCambridge J. and McMeekin T.A., 1980. Relative effects of bacterial and protozoan predators on survival of Escherichia coli in estuarine water samples. Appl. Environ. Microbiol., 40, 907–911. [PubMed] [Google Scholar]
  • Muela A., Garcia-Bringas J.M., Arana I. and Barcina I., 2000. The effect of simulated solar radiation on Escherichia coli: the relative roles of UV-B, UV-A, and photosynthetically active radiations. Microb. Ecol., 39, 65–71. [CrossRef] [PubMed] [Google Scholar]
  • Noble R.T., Lee I.M. and Schiff K.C., 2004. Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J. Appl. Microbiol., 96, 464–472. [CrossRef] [PubMed] [Google Scholar]
  • Pachepsky Y.A., Sadeghi A.M., Bradford S.A., Shelton D.R., Guber A.K. and Dao T., 2006. Transport and fate of manure-borne pathogens: modeling perspective. Agr. Water Manage., 86, 1–92. [CrossRef] [Google Scholar]
  • Roser D.J., Davies C.M., Ashbolt N.J. and Morison P., 2006. Microbial exposure assessment of an urban recreational lake: a case study of the application of new risk-based guidelines. Water Sci. Technol., 54, 245–252. [Google Scholar]
  • Servais P., Billen G. and Rego J.V., 1985. Rate of bacterial mortality in aquatic environments. Appl. Environ. Microbiol., 49, 1448–1454. [PubMed] [Google Scholar]
  • Servais P., Garcia-Armisen T., George I. and Billen G., 2007. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling. Sci. Total Environ., 375, 152–167. [Google Scholar]
  • Smith I.M., Hall K.J., Lavkulich L.M. and Schreier H., 2007. Trace metal concentrations in an intensive agricultural watershed in British Columbia, Canada. J. Am. Water Resour. Assoc., 43, 1455–1467. [Google Scholar]
  • Strahler A.N., 1952. Hypsometric (area altitude) analysis of erosional topology. Geol. Soc. Am. Bull., 63, 1117–1142. [Google Scholar]
  • Topp E., Welsh M., Tien Y.C., Dang A., Lazarovits G., Conn K. and Zhu H., 2003. Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiol. Ecol., 44, 303–308. [CrossRef] [PubMed] [Google Scholar]
  • U.S. Environmental Protection Agency (USEPA), 2000. Improved enumeration methods for the recreational water quality indicators: Enterococci and Escherichia coli, Office of Science and Technology, Washington, DC. [Google Scholar]
  • van Bochove E., Dechmi F., Nolin M.C., Chantigny M.H., Lemieux C., Thériault G. and Corriveau J., 2005. Evaluation of beneficial agricultural management practices on water quality at edge-of-field and micro-watershed scales in Southern Québec, Canada. Proceedings of the International Water Association, 9th Diffuse Pollution Conference, Johannesburg, South Africa. [Google Scholar]
  • Walk S.T., Alm E.W., Calhoun L.M., Mladonicky J.M. and Whittam T.S., 2007. Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ. Microbiol., 9, 2274–2288. [CrossRef] [PubMed] [Google Scholar]
  • Weinbauer M.G. and Höfle M.G., 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl. Environ. Microbiol., 64, 431–438. [PubMed] [Google Scholar]
  • Whitman R.L., Przybyla-Kelly K., Shively D.A., Nevers M.B. and Byappanahalli M.N., 2008. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Sci. Total Environ., 390, 448–455. [CrossRef] [PubMed] [Google Scholar]
  • Wilkes G., Edge T., Gannon V., Jokinen C., Lyautey E., Medeiros D., Neumann N., Ruecker N., Topp E. and Lapen D.R., 2009. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, and Giardia cysts in surface waters within an agricultural landscape. Water Res., 43, 2209–2223. [Google Scholar]
  • Wilkinson J., Jenkins A., Wyer M. and Kay D., 1995. Modeling fecal-coliform dynamics in streams and rivers. Water Res., 29, 847–855. [CrossRef] [Google Scholar]
  • Wommack K.E. and Colwell R.T., 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev., 64, 69–114. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.