Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 46, Number 2, 2010
Page(s) 135 - 147
DOI https://doi.org/10.1051/limn/2010007
Published online 28 April 2010
  • Acharya K., Kyle M. and Elser J.J., 2004. Effects of stoichiometric dietary mixing on Daphnia growth and reproduction. Oecologia, 138, 333–340. [CrossRef] [PubMed] [Google Scholar]
  • Acharya K., Bukaveckas P.A., Jack J.D., Kyle M. and Elser J., 2006. Consumer growth linked to diet and RNA-P stoichiometry: Response of Bosmina to variation in riverine food resources. Limnol. Oceanogr., 51, 1859–1869. [CrossRef] [Google Scholar]
  • Andersen D.H. and Benke A.C., 1994. Growth and reproduction of the cladoceran Ceriodaphnia dubia from a forested floodplain swamp. Limnol. Oceanogr., 39, 1517–1527. [CrossRef] [Google Scholar]
  • Benider A., Tifnout A. and Pourriot R., 2002. Growth of Moina macrocopa (Straus 1820) (Crustacea, Cladocera): influence of trophic conditions, population density and temperature. Hydrobiologia, 468, 1–11. [CrossRef] [Google Scholar]
  • Bottrell H.H., 1975. The relation between temperature and duration of egg development in some epiphytic Cladocera and Copepoda from the River Thames, Reading, with a discussion of temperature functions. Oecologia, 18, 63–84. [PubMed] [Google Scholar]
  • Bunioto T.C. and Arcifa M.S., 2007. Effects of food limitation and temperature on cladocerans from a tropical Brazilian lake. Aquat. Ecol., 41, 569–578. [CrossRef] [Google Scholar]
  • Burns C.W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particles ingested. Limnol. Oceanogr., 13, 675–678. [CrossRef] [Google Scholar]
  • Casanova S.M.C. and Henry R., 2004. Longitudinal distribution of Copepoda populations in the transition zone of Paranapanema River and Jurumirim Reservoir (São Paulo, Brazil) and interchange with two lateral lakes. Braz. J. Biol., 64, 11–26. [PubMed] [Google Scholar]
  • Choueri R.B., Bonecker C.C. and Dias J.D., 2005. Spatial and temporal density variation of microcrustacean assemblages in different systems of the upper Paraná River floodplain (PR/MSBrazil). Acta Sci. Biol., 27, 243–250. [Google Scholar]
  • Cole G.A., 1979. Textbook of Limnology, The C.V. Mosby Company, Saint Louis. [Google Scholar]
  • De Nadai R. and Henry R., 2009. Temporary fragmentation of a marginal lake and its effects on zooplankton community structure and organization. Braz. J. Biol., 69, 819–835. [PubMed] [Google Scholar]
  • DeMott W.R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr., 27, 518–527. [Google Scholar]
  • Díaz-Castro J.G. and Hardy E.R., 1998. Life history of Moina micrura (Kurz) fed with three algae species, in the laboratory. Amazoniana, XV, 25–34. [Google Scholar]
  • Fileto C., Arcifa M.S., Ferrão-Filho A.S. and Silva L.H.S., 2004. Influence of phytoplankton fractions on growth and reproduction of tropical cladocerans. Aquat. Ecol., 38, 503–514. [CrossRef] [Google Scholar]
  • Gordo T., Lubian L.M. and Canavate J.P., 1994. Influence of temperature on growth, reproduction and longevity of Moina salina Daday, 1888 (Cladocera, Moinidae). J. Plankton Res., 11, 1513–1523. [CrossRef] [Google Scholar]
  • Gotelli N.J., 1995. A primer of Ecology, Sinauer Associates, Inc. Publishers, Sounderland. [Google Scholar]
  • Granado D.C. and Henry R., 2008. The influence of the hydrologic pulse on the water physical and chemical variables of lateral lakes with different connections levels to Paranapanema River in the mouth zone at Jurumirim reservoir (São Paulo, Brazil). Acta Limnol. Bras., 20, 265–275. [Google Scholar]
  • Granado D.C., Henry R. and Tucci A., 2009. Influência da variação do nível hidrométrico na comunidade fitoplanctônica do Rio Paranapanema e de uma lagoa marginal na zona de desembocadura na Represa de Jurumirim (SP). Hoehnea, 36, 113–129. [Google Scholar]
  • Gulati R.D. and DeMott W.R., 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwat. Biol., 38, 753–768. [Google Scholar]
  • Hart D.R., Stone L. and Berman T., 2000. Seasonal dynamics of the Lake Kinneret food web: The importance of the microbial loop. Limnol. Oceanogr., 45, 350–361. [CrossRef] [Google Scholar]
  • Hecky R.E., Campbell P. and Hendzel L.L., 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr., 38, 709–724. [CrossRef] [Google Scholar]
  • Henry R., 2005. The connectivity of the Paranapanema River with two lateral lakes in its mouth zone into the Jurumirim Reservoir. Acta Limnol. Bras., 17, 57–69. [Google Scholar]
  • Henry R., 2009. Annual changes in sediment entrapment efficiency in lakes lateral to a river (Paranapanema River, São Paulo, Brazil). Acta Limnol. Bras., 21, 25–34. [Google Scholar]
  • Henry R., Ushinohama E. and Ferreira R.M.R., 2006. O fitoplâncton em três lagoas e no Rio Paranapanema na zona de sua desembocadura na Represa de Jurumirim durante um período prolongado de seca. Rev. Brasil. Bot., 29, 399–414. [Google Scholar]
  • Hessen D.O., 2006. Determinants of seston C∶P-ratio in lakes. Freshwat. Biol., 51, 1560–1569. [CrossRef] [Google Scholar]
  • Hessen D.O., 2008. Efficiency, energy and stoichiometry in pelagic food webs; reciprocal roles of food quality and food quantity. Freshwat. Rev., 1, 43–57. [Google Scholar]
  • Hessen D.O., Andersen T. and Lyche A., 1990. Carbon metabolism in a humic lake: Pool sizes and cycling through zooplankton. Limnol. Oceanogr., 35, 84–99. [Google Scholar]
  • Hessen D.O., Andersen T., Brettum P. and Faafeng B.A., 2003. Phytoplankton contribution to seston mass elemental ratios in lakes: implications for zooplankton nutrition. Limnol. Oceanogr., 48, 1289–1296. [CrossRef] [Google Scholar]
  • Jayatunga Y.N.A., 1986. The influence of food and temperature on the life cycle characteristics of tropical cladoceran species from Kalewewa Reservoir, Sri Lanka. Ph.D. Thesis, University of London, London. [Google Scholar]
  • Kurmayer R., 2000. Nutritive vs. interfering effects of Anabaena on Daphnia and Ceriodaphnia. Verh. Internat. Verein. Limnol., 27, 1–4. [Google Scholar]
  • Lampert W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New Zeal. J. Mar. Freshwat. Res., 21, 483–490. [Google Scholar]
  • Lennon J.T., Smith V.H. and Williams K., 2001. Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. J. Plankton Res., 23, 425–434. [CrossRef] [Google Scholar]
  • Luciano S.C. and Henry R., 1998. Biomass of Eichhornia azurea Kunth. and Brachiaria arrecta Stent. in lower Taquari river, Jurumirim Reservoir, São Paulo, Brazil. Verh. Internat. Verein. Limnol., 26, 1857–1861. [Google Scholar]
  • Mackareth F.J.H., Heron J. and Talling J.F., 1978. Water Analysis: Some Revised Methods for Limnologists, Scientific Publication n° 36, Freshwater Biological Association, Cumbria and Dorser. [Google Scholar]
  • Martins G.M. and Henry R., 2004. Composição e abundância do zooplâncton em três lagoas laterais ao rio Paranapanema na zona de sua desembocadura na Represa de Jurumirim (São Paulo). In: Chellapa N.T., Chellapa S. and Passavante J.Z.O. (eds.), Ecologia Aquática Tropical, Natal, 53–72. [Google Scholar]
  • Martins-Creuzburg D., Sperfeld E. and Wacker A., 2009. Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids. Proc. Soc. B., 276, 1805–1814. [CrossRef] [Google Scholar]
  • Masclaux H., Bec A., Kainz M.J., Desvilettes C., Jouve L. and Bourdier G., 2009. Combined effects of food quality and temperature on somatic growth and reproduction of two freshwater cladocerans. Limnol. Oceanogr., 54, 1323–1332. [Google Scholar]
  • Moschini-Carlos V., Pompeo M.L.M. and Henry R., 1999. Dinâmica da comunidade perifítica na zona de desembocadura do Rio Paranapanema, Represa de Jurumirim, SP. In: Henry R. (ed.), Ecologia de Reservatórios: estrutura, função e aspectos sociais, Ed. Fapesp/Fundibio, Botucatu, 713–734. [Google Scholar]
  • Murphy J. and Riley J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27, 31–36. [CrossRef] [Google Scholar]
  • Murugan N., 1975. Egg production, development and growth in Moina micrura Kurz (1874) (Cladocera: Moinidae). Freshwat. Biol., 5, 245–250. [CrossRef] [Google Scholar]
  • Padisák J. and Reynolds C.S., 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia, 506, 1–11. [CrossRef] [Google Scholar]
  • Panarelli E.A., 2004. Flutuações mensais da comunidade zooplanctônica e dinâmica das populações de Cladocera em lagoas marginais, na região de transição Rio Paranapanema-Represa de Jurumirim (SP). Ph.D. Thesis, Botucatu, Unesp, Brazil. [Google Scholar]
  • Panarelli E.A., Casanova S.M.C., Nogueira M.G., Mitsuka P.M. and Henry R., 2003. A comunidade zooplanctônica ao longo de gradientes longitudinais no Rio Paranapanema/Represa de Jurumirim (São Paulo, Brasil). In: Henry R. (ed.), Ecótonos nas interfaces dos ecossistemas aquáticos, Rima Editora, São Carlos, 129–160. [Google Scholar]
  • Ravet J.L. and Brett M.T., 2006. Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction. Limnol. Oceanogr., 51, 2438–2452. [CrossRef] [Google Scholar]
  • Rietzler A.C., 1998. Tempo de desenvolvimento, reprodução e longevidade de Diaphanosoma birgei Korinek e Ceriodaphnia silvestrii Daday em condições naturais de alimentação. Anais VIII Sem. Reg. Ecol., 8, 1159–1171. [Google Scholar]
  • Rocha O. and Matsumura-Tundisi T., 1990. Growth rate, longevity and reproductive performance of Daphnia laevis Birge, D. gessneri Herbst and D. ambigua Scourfield in laboratory cultures. Braz. J. Biol., 50, 915–921. [Google Scholar]
  • Sarma S.S.S., Nandini S. and Gulati R.D., 2005. Life history of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia, 542, 315–333. [CrossRef] [Google Scholar]
  • Scheffer M., 2004. Ecology of Shallow Lakes – Population and Community Biology Series, Kluwer Academic Publishers. [Google Scholar]
  • Seidendorf B., Meier N., Petrusek A., Boersma M., Streit B. and Schwenk K., 2010. Sensivity of Daphnia species to phosphorus-deficient diets. Oecologia, 162, 349–357. [CrossRef] [PubMed] [Google Scholar]
  • Sipaúba-Tavares L.H. and Bachion M.A., 2002. Influence of dietary habits (algae+supplement) on laboratory population growth and development of two species of Cladocera, Moina micrura and Diaphanosoma birgei. Braz. J. Biol., 62, 12–15. [Google Scholar]
  • Stemberger R.S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. Aquat. Sci., 38, 721–724. [CrossRef] [Google Scholar]
  • Sterner R.W. and Hessen D.O., 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Evol. Syst., 25, 1–29. [Google Scholar]
  • Strickland J.D.H. and Parsons T.R., 1972. A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Bulletin 167. [Google Scholar]
  • Talling J.F. and Lemoalle J., 1998. Ecological dynamics of tropical inland waters, Cambridge University Press. [Google Scholar]
  • Tett A., Heaney S.I. and Droop M.R., 1985. The Redfield ratio and phytoplankton growth rate. J. Mar. Biol. Assoc. UK, 65, 487–504. [CrossRef] [Google Scholar]
  • Utermöhl V., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Verein. Theor. Angew. Limnol., 9, 1–38. [Google Scholar]
  • Vanni M.J., 1987. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr., 57, 61–68. [CrossRef] [Google Scholar]
  • Vijverberg J., 1980. Effect of temperature in laboratory studies on development and growth of cladocera and copepoda from Tjeukemeer, the Netherlands. Freshwat. Biol., 10, 317–340. [Google Scholar]
  • Vollenweider R.A., 1974. Primary Production in Aquatic Environments, Blackwell Scientific Publications, Osney Mead, Oxford. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.