Issue
Int. J. Lim.
Volume 61, 2025
Special issue - Biology and Management of Coregonid Fishes - 2023
Article Number 6
Number of page(s) 19
DOI https://doi.org/10.1051/limn/2025003
Published online 03 April 2025
  • Alexander T, Seehausen O. 2021. Diversity, distribution and community composition of fish in perialpine lakes. “Projet Lac” synthesis report. Eawag: Das Wasserforschungsinstitut des ETH-Bereichs. [Google Scholar]
  • Allan JD, Abell R, Hogan Z, Revenga C, Taylor BW, Welcomme RL, Winemiller K. 2005. Overfishing of Inland Waters. BioScience 55: 1041–1051. [CrossRef] [Google Scholar]
  • Anneville O, Lasne E, Guillard J, Eckmann R, Stockwell J, Gillet, C, Yule, D. 2015. Impact of Fishing and Stocking Practices on Coregonid Diversity. Food Nutr. Sci. 06: 1045. [Google Scholar]
  • Anneville O, Souissi S, Molinero JC, Gerdeaux D. 2009. Influences of human activity and climate on the stock-recruitment dynamics of whitefish, Coregonus lavaretus, in Lake Geneva. Fish. Manage. Ecol. 16: 492–500. [Google Scholar]
  • Anneville O, Vogel C, Lobry J, Guillard J. 2017. Fish communities in the Anthropocene: Detecting drivers of changes in the deep peri-alpine Lake Geneva. Inland Waters 7: 65–76. [CrossRef] [Google Scholar]
  • Baer J, Deweber J, Rösch R, Brinker A. 2021. Aquaculture of Coregonid Species—Quo vadis? Ann. Zool. Fenn. 58: 307–318. [Google Scholar]
  • Baer J, Eckmann R, Rösch R, Arlinghaus R, and Brinker A, 2017. Managing Upper Lake Constance Fishery in a Multi-Sector Policy Landscape: Beneficiary and Victim of a Century of Anthropogenic Trophic Change. in Song A.M., Bower S.D., Onyango P., Cooke S.J., & Chuenpagdee R. (eds.), Inter-sectoral governance of inland fisheries, St John's, NL, Canada: TBTI Publication Series 32–47. [Google Scholar]
  • Baer J, Kugler M, Schubert M, Schotzko N, Rösch R, Vonlanthen P, DeWeber, JT. 2023. A matter of time—Efficacy of whitefish stocking in a large pre-alpine lake. Fish. Manage. Ecol. 30: 615–626. [Google Scholar]
  • Bănaru D, Diaz F, Verley P, Campbell R, Navarro J, Yohia C, Oliveros-Ramos R, Mellon-Duval C, Shin Y-J. 2019. Implementation of an end-to-end model of the Gulf of Lions ecosystem (NW Mediterranean Sea). I. Parameterization, calibration and evaluation. Ecol. Model. 401: 1–19. [Google Scholar]
  • Blomqvist GE, Swahnberg H. 2020. Ekonomisk och strukturell data rörande svenskt insjöfiske. Jordbruksverket rapport, 19: 52 p. [Google Scholar]
  • Bonnier M, Anneville O, Woolway RI, Thackeray SJ, Morin GP, Reynaud N, Soulignac F, Tormos T, Harmel T. 2024. Assessing ESA Climate Change Initiative data for the monitoring of phytoplankton abundance and phenology in deep lakes: Investigation on Lake Geneva. J. Great Lakes Res. 50: 1–14. [Google Scholar]
  • Borcherding J, Heynen M, Jäger-Kleinicke T, Winter HV, Eckmann R. 2010. Re-establishment of the North Sea houting in the River Rhine. Fish. Manage. Ecol. 17: 291–293. [Google Scholar]
  • Bosch NS, Evans MA, Scavia D, Allan JD. 2014. Interacting effects of climate change and agricultural BMPs on nutrient runoff entering Lake Erie. J. Great Lakes Res. 40: 581–589. [Google Scholar]
  • Bourinet F, Anneville O, Drouineau H, Goulon C, Guillard J, Richard A. 2023. Synchrony in whitefish stock dynamics: Disentangling the effects of local drivers and climate. J. Limnol.82. [Google Scholar]
  • Brooke LT. 1975. Effect of Different Constant Incubation Temperatures on Egg Survival and Embryonic Development in Lake Whitefish (Coregonus clupeaformis). Trans. Am. Fish. Soc. 104: 555–559. [Google Scholar]
  • Brown RW, Taylor WW, Assel RA. 1993. Factors affecting therecruitment of lake whitefish in 2 areas of northern Lake Michigan. J. Great Lakes Res 19: 418–428. [Google Scholar]
  • Bunnell DB, Ackiss AS, Alofs KM, Brant CO, Bronte CR, Claramunt RM, Dettmers JM, Honsey AE, Mandrak NE, Muir AM, Santucci Jr VJ, Smith DR, Strach RM., Sweka JA, Weidel BC, Mattes WP, and Newman KR. 2023. A science and management partnership to restore coregonine diversity to the Laurentian Great Lakes. Environ. Rev. 31: 716–738. [Google Scholar]
  • Bunnell DB, Anneville O, Baer J, Bean CW, Kahilainen KK, Sandström A, Selz OM, Vonlanthen P, Wanzenböck J, Weidel B.C. 2024. How diverse is the toolbox? A review of management actions to conserve or restore coregonines. Int. J. Limnol. 60, 5. [Google Scholar]
  • Bunnell DB, Barbiero RP, Ludsin SA, Madenjian CP, Warren GJ, Dolan DM, Brenden TO, Briland R, Gorman OT, He JX, Johengen TH, Lantry BF, Lesht BM, Nalepa TF, Riley SC, Riseng CM, Treska TJ, Tsehaye I, et al. 2014. Changing Ecosystem Dynamics in the Laurentian Great Lakes: Bottom-Up and Top-Down Regulation. BioScience 64: 26–39. [Google Scholar]
  • Cingi S, Keinänen M, and Vuorinen PJ. 2010. Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus. J. Fish Biol. 76: 502–521. [Google Scholar]
  • Collingsworth PD., Bunnell DB, Murray MW, Kao Y-C., Feiner ZS, Claramunt RM, Lofgren BM, Höök TO, and Ludsin SA. 2017. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America | U.S. Geological Survey. Rev. Fish Biol. Fish. 27: 363–391. [Google Scholar]
  • Conley AK, Schlesinger MD, Daley JG, Holst LK, Howard TG. 2021. Modeling habitat suitability and management options for maintaining round whitefish (Prosopium cylindraceum) in Adirondack ponds. Can. J. Fish. Aquat. Sci. 78: 1371–1382. [Google Scholar]
  • Cunningham KE, Dunlop ES. 2023. Declines in lake whitefish larval densities after dreissenid mussel establishment in Lake Huron. J. Great Lakes Res. 49: 491–505. [Google Scholar]
  • Cury P, Anneville O. 1998. Fisheries resources as diminishing assets: Marine diversity threatened by anecdotes. in Global versus Local Changes in Upwelling Systems, ORSTOM (ed.), Paris 537–548. [Google Scholar]
  • Dahlin KM, Ault TR. 2018. Global linkages between teleconnection patterns and the terrestrial biosphere. Int. J. Appl. Earth Obs. Geoinf. 69: 56–63. [Google Scholar]
  • David P, Thébault E, Anneville O, Duyck P-F., Chapuis E, Loeuille N. 2017. Impacts of Invasive Species on Food Webs: A Review of Empirical Data. Adv. Ecol. Res. 56: 1–60. [Google Scholar]
  • Deines AM, Bunnell DB, Rogers MW, Beard TD, Taylor WW. 2015. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate. Rev. Fish Biol. Fish. 25: 323–336. [Google Scholar]
  • FAO. 2022. The state of world fisheries and aquaculture, towards blue transformation. Food and Agriculture Organization of the United Nations, Rome: FAO. [Google Scholar]
  • DeWeber JT, Baer J, Rösch R, Brinker A. 2022. Turning summer into winter: Nutrient dynamics, temperature, density dependence and invasive species drive bioenergetic processes and growth of a keystone coldwater fish. Oikos 2022: e09316. [CrossRef] [Google Scholar]
  • Dobiesz NE, Hecky RE, Johnson TB, Sarvala J, Dettmers JM, Lehtiniemi M, Rudstam LG, Madenjian CP, Witte F. 2010. Metrics of ecosystem status for large aquatic systems − A global comparison. J. Great Lakes Res. 36: 123–138. [Google Scholar]
  • Dove A, Chapra SC. 2015. Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol. Oceanogr. 60: 696–721. [Google Scholar]
  • Ebener MP, Dunlop ES, Muir AM. 2021. Declining Recruitment of Lake Whitefish to Fisheries in the Laurentian Great Lakes: Management Considerations and Research Priorities. Available from www.glfc.org/pubs/misc/2021-01.pdf [Google Scholar]
  • Eckmann R. 2013. A review of the population dynamics of coregonids in European alpine lakes. Adv. Limnol. 64: 3–24. [Google Scholar]
  • Eckmann R, Rösch R. 1998. Lake Constance fisheries and fish ecology. Adv. Limnol. 53: 285–301. [Google Scholar]
  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J. 2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1: 488–494. [Google Scholar]
  • Eme J, Mueller CA, Manzon RG, Somers CM, Boreham DR, Wilson JY. 2015. Critical windows in embryonic development: Shifting incubation temperatures alter heart rate and oxygen consumption of Lake Whitefish (Coregonus clupeaformis) embryos and hatchlings. Comp. Biochem. Physiol. Part A: Molecular and Integrative Physiology 179: 71–80. [Google Scholar]
  • Eshenroder RL, Vecsei P, Gorman OT, Yule D, Pratt TC, Mandrak NE, Bunnell DB, Muir AM. 2016. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon | U.S. Geological Survey (USGS Publications Warehouse). Great Lakes Science Center. [Google Scholar]
  • European Committee of Regions, 2021. From farm to fork − the local and regional dimension (2021/C 37/04; Opinion). [Google Scholar]
  • Fang X, Jiang L, Jacobson PC, Stefan HG, Alam SR, Pereira DL. 2012. Identifying Cisco Refuge Lakes in Minnesota under Future Climate Scenarios. Trans. Am. Fish. Soc. 141: 1608–1621. [Google Scholar]
  • Finger D, Wüest A, Bossard P. 2013. Effects of oligotrophication on primary production in peri-alpine lakes. Water Resour. Res. 49: 4700–4710. [Google Scholar]
  • Freeberg MH, Taylor WW, Brown RW. 1990. Effect of Egg and Larval Survival on Year-Class Strength of Lake Whitefish in Grand Traverse Bay, Lake Michigan. Trans. Am. Fish. Soc., 119: 92–100. [Google Scholar]
  • Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM. 2016. Making sense of the early-2000s warming slowdown. Nature Clim Change 6: 224–228. [Google Scholar]
  • Gerdeaux D, Anneville O, Hefti D. 2006. Fishery changes during re-oligotrophication in 11 peri-alpine Swiss and French lakes over the past 30 years. Acta Oecol. 30: 161–167. [Google Scholar]
  • Gillet C. 1991. Egg production in an Arctic charr (Salvelinus alpinus L.) brood stock: Effects of temperature on the timing of spawning and the quality of eggs. Aquat. Living Resour. 4: 2. [Google Scholar]
  • Göbel S, Baer J, Geist J. 2017. Effects of temperature and rearing density on growth of juvenile European whitefish (Coregonus macrophthalmus) in aquaculture. Fund. Appl. Limnol. / Arch. Hydrobiol. 189/3: 257–266. [Google Scholar]
  • Gugele S, Baer J, Spiessl C, Yohannes E, Blumenshine S, Roberts B, Ferreira M, Brinker A. 2023. Stable isotope values and trophic analysis of invasive three-spined stickleback in Upper Lake Constance points to significant piscivory. NeoBiota 87: 73–102. [Google Scholar]
  • Hållén J, Waldetoft H, Viktor T, Karlsson M. 2020. Dioxiner i fet fisk från Östersjön, Vänern och Vättern. IVL Rapport B 2402. 118 p. [Google Scholar]
  • Hill MO, Smith AJE. 1976. Principal Component Analysis of Taxonomic Data with Multi-State Discrete Characters. TAXON 25: 249–255. [Google Scholar]
  • Hirsch PE, Eckmann R, Oppelt C, Behrmann-Godel J. 2013. Phenotypic and genetic divergence within a single whitefish form − detecting the potential for future divergence. Evol. Appl. 6: 1119–1132. [Google Scholar]
  • Hirsch RM, Slack JR, Smith RA. 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18: 107–121. [Google Scholar]
  • Holmes EE, Ward EJ, Scheuerell MD. 2012. Analysis of multivariate time-series using the MARSS package. NOAA Fisheries, 2725 Montlake Blvd E., Seattle, WA 98112: Northwest Fisheries Science Center. [Google Scholar]
  • Hurrell JW, 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269: 676–679. [Google Scholar]
  • Jacobson PC, Cross TK, Zandlo J, Carlson BN, Pereira DP. 2012. The effects of climate change and eutrophication on cisco Coregonus artedi abundance in Minnesota lakes. Adv. Limnol. 63, 417–427. [Google Scholar]
  • Jacobson PC, Fang X, Stefan HG, Pereira DL. 2013. Protecting cisco (Coregonus artedi Leseur) oxythermal habitat from climate change: Building resilience in deep lakes using a landscape approach. Adv. Limnol. 64, 323–332. [Google Scholar]
  • Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI, Arvola L, Chandra S, DeGasperi CL, Diemer L, Dunalska J, Erina O, Flaim G, Grossart H-P., Hambright KD. et al. 2021. Widespread deoxygenation of temperate lakes. Nature 594: 66–70. [CrossRef] [PubMed] [Google Scholar]
  • Jenny J-P., Anneville O, Arnaud F, Baulaz Y, Bouffard D, Domaizon I, Bocaniov SA, Chèvre N, Dittrich M, Dorioz J-M., Dunlop ES, Dur G, Guillard J, Guinaldo T, Jacquet S, Jamoneau A, Jawed Z, Jeppesen E, Krantzberg G, et al. 2020. Scientists' Warning to Humanity: Rapid degradation of the world's large lakes. J. Great Lakes Res. 46: 686–702. [Google Scholar]
  • Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno PA, Stewart KM. 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanogr. 52: 2013–2026. [Google Scholar]
  • Jeppesen E, Mehner T, Winfield I, Kangur A, Sarvala J, Gerdeaux D, Rask M, Malmquist H, Holmgren K, Volta P, Romo S, Eckmann R, Sandström A, Blanco S, Kangur A, Ragnarsson Stabo H, Tarvainen M, Ventelä A-M., Søndergaard M, Meerhoff M. 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39. [CrossRef] [Google Scholar]
  • Kangur K, Ginter K, Kangur A, Möls T. 2020. How Did the Late 1980s Climate Regime Shift Affect Temperature-Sensitive Fish Population Dynamics: Case Study of Vendace (Coregonus albula) in a Large North-Temperate Lake. Water 12: 2694. [CrossRef] [Google Scholar]
  • Kangur K, Tammiksaar E, Pauly D. 2022. Using the “mean temperature of the catch” to assess fish community responses to warming in a temperate lake. Environ. Biol. Fishes 105: 1405–1413. [Google Scholar]
  • Kao Y-C., Madenjian CP, Bunnell DB, Lofgren BM, Perroud M. 2015. Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron. J. Great Lakes Res. 41: 423–435. [Google Scholar]
  • Kao Y-C., Rogers MW, Bunnell DB, Cowx IG, Qian SS, Anneville O, Beard TD, Brinker A, Britton JR, Chura-Cruz R, Gownaris NJ, Jackson JR, Kangur K, Kolding J, Lukin AA, Lynch AJ, Mercado-Silva N, Moncayo-Estrada R, Njaya FJ, et al. 2020. Effects of climate and land-use changes on fish catches across lakes at a global scale. Nat. Commun. 11 : 2526. [Google Scholar]
  • Kerimoglu O, Jacquet S, Vinçon-Leite B, Lemaire BJ, Rimet F, Soulignac F, Trévisan D, and Anneville O. 2017. Modelling the plankton groups of the deep, peri-alpine Lake Bourget. Ecol. Model. 359: 415–433. [Google Scholar]
  • Kumar, R, Martell, SJ, Pitcher, TJ, Varkey, DA. 2013. Temperature-Driven Decline of a Cisco Population in Mille Lacs Lake, Minnesota. N. Am. J. Fish. Manage. 33: 669–681. [Google Scholar]
  • Ludsin SA, Kershner MW, Blocksom KA, Knight RL, and Stein RA. 2001. Life After Death in Lake Erie: Nutrient Controls Drive Fish Species Richness, Rehabilitation. Ecol. Appl. 11: 731–746. [Google Scholar]
  • Lynch AJ, Taylor WW, Beard TD, Lofgren BM. 2015. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes. J. Great Lakes Res. 41: 415–422. [Google Scholar]
  • MacKenzie CJA, Fortin BL, Stevens CE. 2022. Summary of ecological information relevant to Great Slave Lake fisheries. Can Manuscr. Rep. Fish. Aquat. Sci. 3214: vii+63p. [Google Scholar]
  • Massol F, David P, Gerdeaux D, Jarne P. 2007. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. J. Anim. Ecol. 76: 538–551. [Google Scholar]
  • Mayr C. 2001. The influence of population density on growth of whitefish (Coregonus lavaretus L.) in four prealpine lakes. Limnologica 31: 53–60. [Google Scholar]
  • Mueller C, Eme J, Manzon R, Somers C, Boreham D, Wilson J. 2015. Embryonic critical windows: Changes in incubation temperature alter survival, hatchling phenotype, and cost of development in lake whitefish (Coregonus clupeaformis). J. Comp. Physiol. B 185: 315­–331. [Google Scholar]
  • Müller R. 1992. Trophic state and its implications for natural reproduction of salmonid fish. Hydrobiologia 243/244: 261–268. [CrossRef] [Google Scholar]
  • Müller R. Stadelmann P. 2004. Fish habitat requirements as the basis for rehabilitation of eutrophic lakes by oxygenation. Fisheries Manage. Ecol. 11: 251–260. [Google Scholar]
  • Müller R, Breitenstein M, Bia MM, Rellstab C, Kirchhofer A. 2007. Bottom-up control of whitefish populations in ultra-oligotrophic Lake Brienz. Aquat. Sci. 69: 271–288. [Google Scholar]
  • Norborg Carlsson A-C. 2023. Vattenkvalitet i Vättern. Vätternvårdsförbundet. Rapport 159: 12–22. ISSN 1102-3791 [Google Scholar]
  • Nowicki CJ, Bunnell DB, Armenio PM, Warner DM, Vanderploeg HA, Cavaletto JF, Mayer CM, Adams JV. 2017. Biotic and abiotic factors influencing zooplankton vertical distribution in Lake Huron. J. Great Lakes Res., 43: 1044–1054. [Google Scholar]
  • Numann W. 1970. The Blaufelchen of Lake Constance, Coregonus wartmani under negative and positive influence of man. In: Lindsey C.C. and Wood C.S. (eds.), Biology of Coregonid fishes, University of Manitoba, 531–552. [Google Scholar]
  • Öğlü B, Möls T, Kaart T, Cremona F, Kangur K. 2020. Parameterization of surface water temperature and long-term trends in Europe's fourth largest lake shows recent and rapid warming in winter. Limnologica 82: 125777. [Google Scholar]
  • O'Reilly C, Sharma S, Gray D, Hampton S, Read J, Rowley R, Schneider P, Lenters J, McIntyre P, Kraemer B, Weyhenmeyer G, Straile D, Dong B, Adrian R, Allan M, Anneville O, Arvola L, Austin J, Bailey J, Zhang G. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42: 10773–10781. [Google Scholar]
  • Ovando D, Free CM, Jensen OP Hilborn R. 2022. A history and evaluation of catch-only stock assessment models. Fish and Fisheries 23: 616–630. [Google Scholar]
  • Pankhurst N, Munday P. 2011. Effect of climate change on fish reproduction and early life history stages. Mar. Freshwater Res. 62: 1015–1026. [Google Scholar]
  • Pauly D, Hilborn R, Branch T. 2013. Fisheries: Does catch reflect abundance? Nature,;1; 494, 303–306. [Google Scholar]
  • Perrier C, Molinero J-C., Gerdeaux D, Anneville O. 2012. Effects of temperature and food supply on the growth of whitefish Coregonus lavaretus larvae in an oligotrophic peri-alpine lake. J. Fish Biol. 81: 1501–1513. [Google Scholar]
  • Piton V, Reiss R, Lemmin U, Anneville O, Many G, Keller J, Kindschi V, Kyi Wynn HK, Rasconi S, Laine L, Barry DA. 2024. Identifying and quantifying unexpected deep zooplankton diel vertical migration in a large deep lake. Limnol. Oceanogr. 9999: 1–16. [Google Scholar]
  • R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/. [Google Scholar]
  • Renberg I, Bindler R, Bradshaw E, Emteryd O, Englund J, Leavitt P. 2003. Paleolimnologiska undersökningar i Vättern och Vänern. Vätternvårdsförbundet. Rapport nr 75. 30 pages. [Google Scholar]
  • Rimet F, Anneville O, Barbet D, Chardon C, Crépin L, Domaizon I, Dorioz J-M., Espinat L, Frossard V, Guillard J, Goulon C, Hamelet V, Hustache J-C., Jacquet S, Lainé L, Montuelle B, Perney P, Quetin P, Rasconi S, et al. 2020. The Observatory on LAkes (OLA) database: Sixty years of environmental data accessible to the public: The Observatory on LAkes (OLA) database. J. Limnol. 79: 2. [Google Scholar]
  • Roberts BJ, Chucholl C, Brinker A. 2024. Coldwater, stenothermic fish seem bound to suffer under the spectre of future warming. J. Great Lakes Res. 50: 102351. [Google Scholar]
  • Rodrigues T, Chapelsky A, Hrenchuk L, Mushet G, Chapman L, Blanchfield P. 2022. Behavioural responses of a cold-water benthivore to loss of oxythermal habitat. Environ. Biol. Fishes 105: 1489–1507. [Google Scholar]
  • Rogell B, Axenrot T. 2023. Pelagisk fisk i Vänern 2022. Aqua notes 2023:13. Uppsala: Institutionen för akvatiska resurser. [Google Scholar]
  • Rogissart H, Goulon C, Guillard J. 2024. Historical rehabilitation of whitefish fisheries in Lake Geneva and Lake Bourget during the eutrophication period: assessing socio-economic impacts through large collaborative research. Int. J. Limnol. 60: 13. [Google Scholar]
  • Rook BJ, Lenart SJ, Caroffino DC, Muir AM, Bronte CR. 2022. A 90-year record of lake whitefish Coregonus clupeaformis abundances in Michigan waters of the upper Laurentian Great Lakes. J. Great Lakes Res. 48: 1618–1635. [Google Scholar]
  • Rösch R. 1987. Egg—Size of pelagic and nearshore spawning Coregonids (Coregonus lavaretus L.) from Lake Constance correlated with the fish weight. Arch. Hydrobiol. 109: 519–523. [Google Scholar]
  • Rösch R, Baer J, Brinker A., 2018. Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake Constance. Hydrobiologia 824: 243–254. [CrossRef] [Google Scholar]
  • Rühland K, Evans M, Smol J. 2023. Arctic warming drives striking twenty-first century ecosystem shifts in Great Slave Lake (Subarctic Canada), North America's deepest lake. Proc. Roy. Soc. London, Ser. B, 290: 2007. [Google Scholar]
  • Sandlund O, Hesthagen T, Brabrand Å. 2013. Coregonid introductions in Norway: Well-intended and successful, but destructive. Adv. Limnol. 64: 341–358. [Google Scholar]
  • Sandström A, Ragnarsson Stabo H, Axenrot T, Bergstrand E. 2014. Has climate variability driven the trends and dynamics in recruitment of pelagic fish species in Swedish Lakes Vänern and Vättern in recent decades? Aquat. Ecosyst. Health Manage. 17: 349–356. [Google Scholar]
  • Scofield AE, Watkins JM, Osantowski E, Rudstam LG. 2020. Deep chlorophyll maxima across a trophic state gradient: A case study in the Laurentian Great Lakes. Limnol. Oceanogr. 65: 2460–2484. [Google Scholar]
  • Sen PK. 1968. Estimates of the Regression Coefficient Based on Kendall's Tau. J. Am. Stat. Assoc., 63: 1379–1389. [Google Scholar]
  • Servili A, Canario AVM, Mouchel O, Muñoz-Cueto JA. 2020. Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen. Comp. Endocrinol. 291: 113439. [Google Scholar]
  • Shimoda Y, Cai H, Fernando Y, Okoli A, Xu Z, Koops M, Johnson TB, Arhonditsis GB. 2023. How influential is the role of oligotrophication on the integrity of fish assemblages in the littoral zone? J. Great Lakes Res. 49: 847–861. [Google Scholar]
  • Steinsberger T, Schwefel R, Wüest A, Müller B. 2020. Hypolimnetic oxygen depletion rates in deep lakes: Effects of trophic state and organic matter accumulation. Limnol. Oceanogr. 65: 3128–3138. [Google Scholar]
  • Stewart TR, Karjalainen J, Zucchetta M, Goulon C, Anneville O, Vinson MR, Wanzenböck J, Stockwell JD. 2024a. Winter is not coming: evaluating impacts of changing winter conditions on coregonine reproductive phenology. Int. J. Limnol. 60: 17. [Google Scholar]
  • Stewart T, Mäkinen M, Goulon C, Guillard J, Marjomäki T, Lasne E, Karjalainen J, Stockwell JD. 2021. Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia 848: 4363–4385. [CrossRef] [Google Scholar]
  • Stewart TR, Brun C, Goulon C, Baer J, Karjalainen JS, Guillard J, Lasne E. 2024b. Response of European whitefish embryos to thermal conditions diverges between peri-alpine populations. Int. J. Limnol. 60: 19. [Google Scholar]
  • Straile D, Eckmann R, Jüngling T, Thomas G, Löffler H. 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year class strength in a warm monomictic lake. Oecologia 151: 521–529. [CrossRef] [PubMed] [Google Scholar]
  • Svärdson G. 1976. Interspecific population dominance in fish communities of Scandinavian lakes. Rep. Inst. Freshw. Res. 55: 144–171. [Google Scholar]
  • Tammiksaar E, Kangur K. 2020. Fish and fishing in Lake Peipsi (Estonia/Russia) since 1851: Similarities and differences between historical and modern times. J. Great Lakes Res. 46: 862–869. [Google Scholar]
  • Trippel EA, Eckmann R, Hartmann J. 1991. Potential Effects of Global Warming on Whitefish in Lake Constance, Germany. Ambio 20: 226–231. [Google Scholar]
  • United Nations General Assembly, 2015. Appendix: Transforming Our World: The 2030 Agenda for Sustainable Development (No. A/RES/70/1). From A New Era in Global Health. DOI: 10.1891/9780826190123.ap02 [Google Scholar]
  • Vanni MJ, Luecke C, Kitchell JF, Magnuson JJ. 1990. Effects of planktivorous fish mass mortality on the plankton community of Lake Mendota, Wisconsin: Implications for biomanipulation. Hydrobiologia 200: 329–336. [Google Scholar]
  • Vollenweider, RA, Kerekes, J. 1982. Eutrophication of Waters: Monitoring, Assessment and Control. OECD Cooperative Program on monitoring inland waters (Eutrophication control). Environment Directorate, OECD, Paris. [Google Scholar]
  • Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, and Seehausen O. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–362. [CrossRef] [PubMed] [Google Scholar]
  • Wahl B, Peeters F. 2014. Effect of climatic changes on stratification and deep-water renewal in Lake Constance assessed by sensitivity studies with a 3D hydrodynamic model. Limnol. Oceanogr. 59: 1035–1052. [Google Scholar]
  • Weyhenmeyer GA, Chukwuka AV, Anneville O, Brookes J, Carvalho CR, Cotner JB, et al. 2024. Global lake health in the Anthropocene: Societal implications and treatment strategies. Earth's Future 12, e2023EF004387. [Google Scholar]
  • Wickham H. 2016. Ggplot2: Elegant graphics for data analysis (2nd edition). New York: Springer-Verlag. [Google Scholar]
  • Woelmer WM, Kao Y-C., Bunnell DB, Deines AM, Bennion DH, Rogers MW, Brooks CN, Sayers MJ, Banach DM, Grimm AG, Shuchman RA. 2016. Assessing the influence of watershed characteristics on chlorophyll a in waterbodies at global and regional scales. Inland Waters 6: 379–392. [Google Scholar]
  • Woolway RI, Kraemer B, Lenters J, Merchant C, O'Reilly C, Sharma S. 2020. Global lake responses to climate change. Nat. Rev. Earth Environ., 1: 388–403. [Google Scholar]
  • Zhu X, Day C, Taptuna F, Carmichael T, Tallman R. 2015. Hierarchical modeling of spatiotemporal dynamics of biological characteristics of Lake Whitefish, Coregonus clupeaformis (Mitchill), in Great Slave Lake, Northwest Territories, 1972–2004. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/038: 1–56. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.