Issue
Int. J. Lim.
Volume 60, 2024
Special issue - Biology and Management of Coregonid Fishes - 2023
Article Number 19
Number of page(s) 11
DOI https://doi.org/10.1051/limn/2024017
Published online 04 October 2024
  • Alexander TJ, Vonlanthen P, Seehausen O. 2017. Does eutrophication-driven evolution change aquatic ecosystems? Philos Trans R Soc B Biol Sci 372: 20160041. [CrossRef] [PubMed] [Google Scholar]
  • Anneville O, Beniston M, Gallina N, Gillet C, Jacquet S, Lazzarotto J. 2013. L ' empreinte du changement climatique sur le Léman. Arch des Sci 66: 157–172. [Google Scholar]
  • Anneville O, Lasne E, Guillard J, Eckmann R, Stockwell JD, Gillet C, Yule DL. 2015. Impact of fishing and stocking practices on coregonid diversity. Food Nutr Sci 6: 1045–1055. [Google Scholar]
  • Asch RG, Stock CA, Sarmiento JL. 2019. Climate change impacts on mismatches between phytoplankton blooms and fish spawning phenology. Glob Chang Biol 25: 2544–2559. [CrossRef] [PubMed] [Google Scholar]
  • Asse D, Chuine I, Vitasse Y, Yoccoz NG, Delpierre N, Badeau V, Delestrade A, Randin CF. 2018. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agric For Meteorol 252: 220–230. [CrossRef] [Google Scholar]
  • Baer J, Ziegaus S, Schumann M, Geist J, Brinker A. 2023. Escaping malnutrition by shifting habitats: A driver of three-spined stickleback invasion in Lake Constance. J. Fish Biol. 104: 746–757. [Google Scholar]
  • Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67: 1–48 [CrossRef] [Google Scholar]
  • Bourinet F, Anneville O, Drouineau H, Goulon C, Guillard J, Richard A. 2023. Synchrony in whitefish stock dynamics: disentangling the effects of local drivers and climate. J Limnol 82: 2134. [CrossRef] [Google Scholar]
  • Christie MR, Marine ML, French RA, Blouin MS. 2012. Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci USA 109: 238–242. [CrossRef] [PubMed] [Google Scholar]
  • Cingi S, Keinänen M, Vuorinen PJ. 2010. Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus. J Fish Biol 76: 502–521. [CrossRef] [PubMed] [Google Scholar]
  • Crotti M, Adams CE, Etheridge EC, Bean CW, Gowans ARD, Knudsen R, Lyle AA, Maitland PS, Winfield IJ, Elmer KR, Præbel K. 2020. Geographic hierarchical population genetic structuring in British European whitefish (Coregonus lavaretus) and its implications for conservation. Conserv Genet 21: 927–939. [CrossRef] [Google Scholar]
  • Cushing DH. 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv Mar Biol 26: 249–293. [CrossRef] [Google Scholar]
  • Czerkies P, Brzuzan P, Kordalski K, Luczynski M. 2001. Critical partial pressures of oxygen causing precocious hatching in Coregonus lavaretus and C. albula embryos. Aquaculture 196: 151–158. [CrossRef] [Google Scholar]
  • Dahlke FT, Wohlrab S, Butzin M, Pörtner HO. 2020. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369: 65–70. [CrossRef] [PubMed] [Google Scholar]
  • De-Kayne R, Selz OM, Marques DA, Frei D, Seehausen O, Feulner PGD. 2022. Genomic architecture of adaptive radiation and hybridization in Alpine whitefish. Nat Commun 13: 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Desgué-Itier O, Melo Vieira Soares L, Anneville O, Bouffard D, Chanudet V, Danis PA, Domaizon I, Guillard J, Mazure T, Sharaf N, Soulignac F, Tran-Khac V, et al. 2023. Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes. Hydrol Earth Syst Sci 27: 837–859. [CrossRef] [Google Scholar]
  • DeWeber JT, Baer J, Rösch R, Brinker A. 2022. Turning summer into winter: nutrient dynamics, temperature, density dependence and invasive species drive bioenergetic processes and growth of a keystone coldwater fish. Oikos 2022: 1–14. [CrossRef] [Google Scholar]
  • Douglas MR, Brunner PC. 2002. Biodiversity of Central Alpine Coregonus (Salmoniformes): impact of one-hundred years of management. Ecol Appl 12: 154–172. [CrossRef] [Google Scholar]
  • Durant JM, Molinero JC, Ottersen G, Reygondeau G, Stige LC, Langangen Ø. 2019. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci Rep 9: 1–9. [PubMed] [Google Scholar]
  • Eckmann R. 1987. A comparative study on the temperature dependence of embryogenesis in three coregonids (Coregonus spp.) from Lake Constance. Swiss J Hydrol 49: 353–362. [CrossRef] [Google Scholar]
  • Eckmann R, Rösch R. 1998. Lake constance fisheries and fish ecology. Adv Limnol 53: 285–301. [Google Scholar]
  • Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP. 2011. Differences in thermal tolerance among sockeye salmon populations. Science 332: 109–112. [CrossRef] [PubMed] [Google Scholar]
  • Frei D, Reichlin P, Seehausen O, Feulner PGD. 2023. Introgression from extinct species facilitates adaptation to its vacated niche. Mol Ecol 32: 841–853. [CrossRef] [PubMed] [Google Scholar]
  • George G. 2010. The Impact of Climate Change on European Lakes. Springer, Dordrecht (Netherlands). 534 p. [Google Scholar]
  • Gillet C. 1991. Egg production in a whitefish (Coregonus shinzi palea) brood stock: effects of photoperiod on the timing of spawning and the quality of eggs. Aquat Living Resour 4: 33–39. [CrossRef] [EDP Sciences] [Google Scholar]
  • Graham CT, Harrod C. 2009. Implications of climate change for the fishes of the British Isles. J Fish Biol. 74: 1143–1205. [Google Scholar]
  • Gum B, Geist J, Eckenfels S, Brinker A. 2014. Genetic diversity of upper Lake Constance whitefish Coregonus spp. under the influence of fisheries: a DNA study based on archived scale samples from 1932. 1975 and 2006. J Fish Biol 84: 1721–1739. [CrossRef] [PubMed] [Google Scholar]
  • Hansen GJA, Read JS, Hansen JF, Winslow LA. 2017. Projected shifts in fish species dominance in Wisconsin lakes under climate change. Glob Chang Biol 23: 1463–1476. [CrossRef] [PubMed] [Google Scholar]
  • Hartmann J. 1984. 11-year cycle of spawning time and growth of the whitefish (Coregonus lavaretus) of Lake Constance. Schweizerische Zeitsch Hydrol. 46: 163–170. [Google Scholar]
  • Hendry AP. 2009. Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 66: 1383–1398. [CrossRef] [Google Scholar]
  • Hodson P.V., Blunt BR. 1986. The effect of time from hatch on the yolk conversion efficiency of rainbow trout, Salmo gairdneri. J Fish Biol 29: 37–46. [CrossRef] [Google Scholar]
  • Hoffmann AA, Sgrò CM. 2011. Climate change and evolutionary adaptation. Nature 470: 479–485. [CrossRef] [PubMed] [Google Scholar]
  • ISO 6341. 2012. Water Quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test. International Organization for Standardization. https://www.iso.org/standard/54614.html. [Google Scholar]
  • Kamler E. 2008. Resource allocation in yolk-feeding fish. Rev Fish Biol Fish 18: 143–200. [CrossRef] [Google Scholar]
  • Karjalainen J, Keskinen T, Pulkkanen M, Marjomäki TJ. 2015. Climate change alters the egg development dynamics in cold-water adapted coregonids. Environ Biol Fishes 98: 979–991. [CrossRef] [Google Scholar]
  • Karjalainen J, Urpanen O, Keskinen T, Huuskonen H, Sarvala J, Valkeajärvi P, Marjomäki TJ. 2016. Phenotypic plasticity in growth and fecundity induced by strong population fluctuations affects reproductive traits of female fish. Ecol Evol 6: 779–790. [CrossRef] [PubMed] [Google Scholar]
  • Kelly S, Moore TN, Eyto E de, Dillane F M, S Goulon C, Guillard J, Lasne E, McGinnity P, Poole R, Winfield IJ, Woolway RI, Jennings E. 2020. Warming winters threaten peripheral Arctic charr populations of Europe. Clim Change 163: 599–618. [CrossRef] [Google Scholar]
  • Kottelat M, Freyhof J. 2007. Handbook of European Freshwater Fishes. Publications Kottelat, 646 pp. [Google Scholar]
  • Lardies MA, Bacigalupe LD, Bozinovic F. 2004. Testing the metabolic cold adaptation hypothesis: An intraspecific latitudinal comparison in the common woodlouse. Evol Ecol Res 6: 567–578. [Google Scholar]
  • Lenth R. 2024. emmeans: Estimated Marginal Means, aka Least-Squares Means, https://rvlenth.github.io/emmeans. [Google Scholar]
  • Maberly SC, O'Donnell RA, Woolway RI, Cutler MEJ, Gong M, Jones ID, Merchant CJ, Miller CA, Politi E, Scott EM, Thackeray SJ, Tyler AN. 2020. Global lake thermal regions shift under climate change. Nat Commun 11: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Martin BT, Dudley PN, Kashef NS, Stafford DM, Reeder WJ, Tonina D, Del Rio AM, Scott Foott J, Danner EM. 2020. The biophysical basis of thermal tolerance in fish eggs: thermal tolerance in fish eggs. Proc R Soc B Biol Sci 287. [Google Scholar]
  • McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. 2021. Intraspecific variation in tolerance of warming in fishes. J Fish Biol 98: 1536–1555. [CrossRef] [PubMed] [Google Scholar]
  • Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ. 2023. Understanding local adaptation to prepare populations for climate change. Bioscience 73: 36–47. [CrossRef] [Google Scholar]
  • Michel A, Råman Vinnå L, Bouffard D, Epting J, Huwald H, Schaefli B, Schmid M, Wüest A. 2021. Evolution of stream and lake water temperature under climate change. Federal Office for the Environment, 71 pp. [Google Scholar]
  • Mitz C, Thome C, Cybulski ME, Somers CM, Manzon RG, Wilson JY, Boreham DR. 2019. Thermal dependence of size-at-hatch in the lake whitefish (Coregonus clupeaformis). Can J Fish Aquat Sci 76: 2069–2079. [CrossRef] [Google Scholar]
  • Öhlund G, Bodin M, Nilsson KA, Öhlund SO, Mobley KB, Hudson AG, Peedu M, Brännström Å, Bartels P, Præbel K, Hein CL, Johansson P, et al. 2020. Ecological speciation in European whitefish is driven by a large-gaped predator. Evol Lett 4: 243–256. [CrossRef] [PubMed] [Google Scholar]
  • Østbye K, Bernatchez L, Næsje TF, Himberg KJM, Hindar K. 2005. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol Ecol 14: 4371–4387. [CrossRef] [PubMed] [Google Scholar]
  • Pankhurst NW, Munday PL. 2011. Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res 62: 1015–1026. [CrossRef] [Google Scholar]
  • Pörtner HO, Farrell AP. 2008. Physiology and climate change. Science 322: 690–692. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/. [Google Scholar]
  • Régnier T, Bolliet V, Gaudin P, Labonne J. 2013. Bigger is not always better: egg size influences survival throughout incubation in brown trout (Salmo trutta). Ecol Freshw Fish 22: 169–177. [CrossRef] [Google Scholar]
  • Rellstab C, Bürgi HR, Müller R. 2004. Population regulation in coregonids: The significance of zooplankton concentration for larval mortality. Ann Zool Fennici 41: 281–290. [Google Scholar]
  • Rimet F, Anneville O, Barbet D, Chardon C, Crépin L, Domaizon I, Dorioz JM, Espinat L, Frossard V, Guillard J, Goulon C, Hamelet V, et al. 2020. The Observatory on LAkes (OLA) database: sixty years of environmental data accessible to the public. J Limnol 79: 164–178. [CrossRef] [Google Scholar]
  • Roberts BJ, Chucholl C, Brinker A. 2024. Coldwater, stenothermic fish seem bound to suffer under the spectre of climate change. J Grate Lakes Res 102351. [CrossRef] [Google Scholar]
  • Rösch R, Baer J, Brinker A. 2018. Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake. Hydrobiologia 824: 243–254. [CrossRef] [Google Scholar]
  • Selz OM, Dönz CJ, Vonlanthen P, Seehausen O. 2020. A taxonomic revision of the whitefish of lakes brienz and thun, switzerland, with descriptions of four new species (Teleostei, coregonidae). Zookeys 2020: 79–162. [CrossRef] [PubMed] [Google Scholar]
  • Selz OM, Seehausen O. 2023. A taxonomic revision of ten whitefish species from the lakes Lucerne, Sarnen, Sempach and Zug, Switzerland, with descriptions of seven new species (Teleostei, Coregonidae). Zookeys 1144: 95–169. [CrossRef] [PubMed] [Google Scholar]
  • Sommer U, Gliwicz ZM, Lampert W, Duncan A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch für Hydrobiol 106: 433–471. [CrossRef] [Google Scholar]
  • Stewart TR, Mäkinen M, Goulon C, Guillard J, Marjomäki TJ, Lasne E, Karjalainen J, Stockwell JD. 2021. Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia 848: 4363–4385. [CrossRef] [Google Scholar]
  • Straile D, Eckmann R, Jüngling T, Thomas G, Löffler H. 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151: 521–529. [CrossRef] [PubMed] [Google Scholar]
  • Sunday J. 2020. When do fish succumb to heat? Science (80-.). 369: 35–36. [Google Scholar]
  • Tan S, Li P, Yao Z, Liu G, Yue B, Fu J, Chen J. 2021. Metabolic cold adaptation in the Asiatic toad: intraspecific comparison along an altitudinal gradient. J Comp Physiol B Biochem Syst Environ Physiol 191: 765–776. [CrossRef] [PubMed] [Google Scholar]
  • Thorn MW, Morbey YE. 2018. Egg size and the adaptive capacity of early life history traits in Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 11: 205–219. [CrossRef] [PubMed] [Google Scholar]
  • Trippel EA, Eckmann R, Hartmann J. 1991. Potential effects of global warming on whitefish in lake Constance, Germany. Ambio 20: 226–231. [Google Scholar]
  • Valdimarsson SK, Skúlason S, Snorrason SS. 2002. The relationship between egg size and the rate of early development in arctic charr, Salvelinus alpinus. Environ Biol Fishes 65: 463–468. [CrossRef] [Google Scholar]
  • Voeten CC. 2020. buildmer: Stepwise Elimination and Term Reordering for Mixed-Effects Regression. https://cran.r-project.org/package=buildmer. [Google Scholar]
  • Vonlanthen, Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–362. [CrossRef] [PubMed] [Google Scholar]
  • Vrtílek M, Van Dooren TJM, Beaudard M. 2020. Egg size does not universally predict embryonic resources and hatchling size across annual killifish species. Comp Biochem Physiol −Part A Mol Integr Physiol 249: 110769. [CrossRef] [Google Scholar]
  • Wahl B, Peeters F. 2014. Effect of climatic changes on stratification and deep-water renewal in Lake Constance assessed by sensitivity studies with a 3D hydrodynamic model. Limnol Oceanogr 59: 1035–1052. [CrossRef] [Google Scholar]
  • Wedekind C. 2002. Induced hatching to avoid infectious egg disease in whitefish. Curr Biol 12: 69–71. [CrossRef] [PubMed] [Google Scholar]
  • Wedekind C, Müller R. 2005. Risk-induced early hatching in salmonids. Ecology 86: 2525–2529. [CrossRef] [Google Scholar]
  • White CR, Alton LA, Frappell PB. 2012. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc R Soc B Biol Sci 279: 1740–1747. [CrossRef] [PubMed] [Google Scholar]
  • Wilczek AM, Burghardt LT, Cobb AR, Cooper MD, Welch SM, Schmitt J. 2010. Genetic and physiological bases for phenological responses to current and predicted climates. Philos Trans R Soc B Biol Sci 365: 3129–3147. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.