Issue |
Int. J. Lim.
Volume 60, 2024
Special issue - Biology and Management of Coregonid Fishes - 2023
|
|
---|---|---|
Article Number | 15 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/limn/2024015 | |
Published online | 02 September 2024 |
- Alcala AC, Russ GR. 1990. A direct test of the effects of protective management on abundance and yield of tropical marine resources. ICES J Mar Sci 47: 40–47. [CrossRef] [Google Scholar]
- Alexander T, Seehausen O. 2021. Diversity, distribution and community composition of fish in perialpine lakes. ‘Projet Lac’ synthesis report. Eawag Wasserforschungsinstitut ETH-Bereichs, 284. [Google Scholar]
- Alves DC, Minte-Vera CV, Agostinho AA, Okada EK, Vasconcelos LP. 2013. Hydrological attributes and rheophilic freshwater fish: stock assessment. Rev Fish Biol Fish 23: 375–394. [CrossRef] [Google Scholar]
- Anneville O, Lasne E, Guillard J, Eckmann R, Stockwell JD, Gillet C, Yule DL. 2015. Impact of fishing and stocking practices on coregonid diversity. Food Nutr Sci 6: 1045–1055. [Google Scholar]
- Anneville O, Souissi S, Molinero JC, Gerdeaux D. 2009. Influences of human activity and climate on the stock-recruitment dynamics of whitefish, Coregonus lavaretus, in Lake Geneva. Fish Manag Ecol 16: 492–500. [CrossRef] [Google Scholar]
- Anneville O, Vogel C, Lobry J, Guillard J. 2017. Fish communities in the Anthropocene: detecting drivers of changes in the deep peri-alpine Lake Geneva. Inland Waters 7: 65–76. [CrossRef] [Google Scholar]
- Appelberg M. 2000. Swedish standard methods for sampling freshwater fish with multimesh. Rep Inst Freshw Res 26. [Google Scholar]
- Auvinen H. 1987. Growth, mortality and management of whitefish (Coregonus lavaretus L. s.l.), vendace (Coregonus albula L.), roach (Rutilus rutilus L.) and perch (Perca fluviatilis L.) in Lake Pyhäjärvi (Karelia). Finn Fish Res 8: 38–47. [Google Scholar]
- Baer J, Kugler M, Schubert M, Schotzko N, Rösch R, Vonlanthen P, DeWeber JT. 2023. A matter of time—efficacy of whitefish stocking in a large pre-alpine lake. Fish Manag Ecol 1:12. [Google Scholar]
- Bai X, Gao L, Choi S. 2022. Exploring the response of the Japanese sardine (Sardinops melanostictus) stock-recruitment relationship to environmental changes under different structural models. Fishes 7: 276. [CrossRef] [Google Scholar]
- Bartley DM, De Graaf GJ, Valbo-Jørgensen J, Marmulla G. 2015. Inland capture fisheries: status and data issues. Fish Manag Ecol 22: 71–77. [CrossRef] [Google Scholar]
- Beauchamp KC, Collins NC, Henderson BA. 2004. Covariation of growth and maturation of lake whitefish (Coregonus clupeaformis). J Gt Lakes Res 30: 451–460. [CrossRef] [Google Scholar]
- Berger AM, Jones ML, Zhao Y, Bence JR. 2012. Accounting for spatial population structure at scales relevant to life history improves stock assessment: the case for Lake Erie walleye Sander vitreus. Fish Res 115–116: 44–59. [CrossRef] [Google Scholar]
- Berkeley SA, Hixon MA, Larson RJ, Love MS. 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29: 23–32. [CrossRef] [Google Scholar]
- Bernatchez L, Dodson JJ. 1994. Phylogenetic relationships among Palearctic and Nearctic whitefish (Coregonus sp.) populations as revealed by mitochondrial DNA variation. Can J Fish Aquat Sci 51: 240–251. [CrossRef] [Google Scholar]
- Beverton RJH, Holt SJ. 1959. A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In Ciba Foundation Symposium – The Lifespan of Animals (Colloquia on Ageing). John Wiley & Sons, Ltd, pp. 142–180. [Google Scholar]
- Birkeland C, Dayton PK. 2005. The importance in fishery management of leaving the big ones. Trends Ecol Evol 20: 356–358. [PubMed] [Google Scholar]
- Bogdanov DV, Sendek DS, Lajus DL. 2021. Coregonine fisheries in the eastern Gulf of Finland, Baltic Sea: history and current status. Adv Limnol 65–81. [CrossRef] [Google Scholar]
- Bourinet F, Anneville O, Drouineau H, Goulon C, Guillard J, Richard A. 2023. Synchrony in whitefish stock dynamics: disentangling the effects of local drivers and climate. J Limnol 82: 2134. [CrossRef] [Google Scholar]
- Bousseba M, Ferraj L, Ouahb S, Droussi M, Hasnaoui M. 2021. Study of the mortality and exploitation parameters of Sander lucioperca (Linnaeus, 1758) in the Al Massira Reservoir. E3S Web Conf 314: 03003. [CrossRef] [EDP Sciences] [Google Scholar]
- Brooke LT. 1975. Effect of different constant incubation temperatures on egg survival and embryonic development in lake whitefish (Coregonus clupeaformis). Trans Am Fish Soc 104: 555–559. [CrossRef] [Google Scholar]
- Campbell RA. 2015. Constructing stock abundance indices from catch and effort data: some nuts and bolts. Fish Res 161: 109–130. [CrossRef] [Google Scholar]
- Caranhac F. 1999. Modélisation de la dynamique de populations piscicoles exploitées intégrant la variabilité individuelle de croissance: application aux corégones (Coregonus lavaretus) du lac d’Annecy. Thèse de doctorat. Lyon 1. [Google Scholar]
- Champigneulle A, Cachera S. 2008. Evaluation de la stratégie de pacage lacustre (repeuplement en lac) pour le corégone (Coregonus lavaretus) au lac du Bourget. Rapport SHL 284-2008, INRA-Thonon. 45. [Google Scholar]
- Charbonneau JA, Keith DM, MacNeil MA, Hutchings JA. 2022. Effects of fishing mortality on the age structure of marine fishes. Can J Fish Aquat Sci 79: 2225–2236. [CrossRef] [Google Scholar]
- Chen DG, Irvine JR. 2001. A semiparametric model to examine stock-recruitment relationships incorporating environmental data. Can J Fish Aquat Sci 58: 1178–1186. [Google Scholar]
- Chrysafi A, Kuparinen A. 2016. Assessing abundance of populations with limited data: lessons learned from data-poor fisheries stock assessment. Environ Rev 24: 25–38. [CrossRef] [Google Scholar]
- Cingi S, Keinänen M, Vuorinen PJ. 2010. Elevated water temperature impairs fertilization and embryonic development of whitefish Coregonus lavaretus. J Fish Biol 76: 502–521. [CrossRef] [PubMed] [Google Scholar]
- Clark WG. 2002. F35% revisited ten years later. North Am J Fish Manag 22: 251–257. [CrossRef] [Google Scholar]
- Cox SP, Kitchell JF. 2004. Lake Superior ecosystem, 1929–1998: simulating alternative hypotheses for recruitment failure of lake herring (Coregonus artedi). Bull Mar Sci Bull Mar Sci 74: 671–683. [Google Scholar]
- Deceliere-Vergès C, Guillard J. 2008. Assessment of the pelagic fish populations using CEN multi-mesh gillnets: consequences for the characterization of the fish communities. Knowl Manag Aquat Ecosyst 04. [CrossRef] [EDP Sciences] [Google Scholar]
- De-Kayne R, Selz OM, Marques DA, Frei D, Seehausen O, Feulner PGD. 2022. Genomic architecture of adaptive radiation and hybridization in Alpine whitefish. Nat Commun 13: 4479. [CrossRef] [PubMed] [Google Scholar]
- Denwood MJ. 2016. runjags: An R Package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J Stat Softw 71: 1–25. [CrossRef] [Google Scholar]
- Deriso RB. 1980. Harvesting strategies and parameter estimation for an age-structured model. Can J Fish Aquat Sci 37: 268–282. [CrossRef] [Google Scholar]
- Downing JA, Plante C, Lalonde S. 1990. Fish production correlated with primary productivity, not the morphoedaphic index. Can J Fish Aquat Sci 47: 1929–1936. [CrossRef] [Google Scholar]
- Draštík V, Godlewska M, Balk H, Clabburn P, Kubečka J, Morrissey E, Hateley J, Winfield IJ, Mrkvička T, Guillard J. 2017. Fish hydroacoustic survey standardization: a step forward based on comparisons of methods and systems from vertical surveys of a large deep lake. Limnol Oceanogr Methods 15: 836–846. [CrossRef] [Google Scholar]
- Eckmann R, Gerdeaux D, Müller R, Rösch R. 2007a. Re-oligotrophication and whitefish fisheries management – a workshop summary. Biol Manag Coregonid Fishes – 2005 Proc. Ninth Int. Symp. Biol. Manag. Coregonid Fishes Held Olszt. Pol. 21-27 August 2005, 353–360. [Google Scholar]
- Eckmann R, Kugler M, Ruhlé C. 2007b. Evaluating the success of large-scale whitefish stocking at Lake Constance. Adv Limnol 60: 361–368. [Google Scholar]
- Fera SA, Rennie MD, Dunlop ES. 2015. Cross-basin analysis of long-term trends in the growth of lake whitefish in the Laurentian Great Lakes. J Gt Lakes Res 41: 1138–1149. [CrossRef] [Google Scholar]
- Fisch NC, Bence JR, Myers JT, Berglund EK, Yule DL. 2019. A comparison of age-and size-structured assessment models applied to a stock of cisco in Thunder Bay, Ontario. Fish Res 209: 86–100. [CrossRef] [Google Scholar]
- Fitzgerald CJ, Delanty K, Shephard S. 2018. Inland fish stock assessment: applying data-poor methods from marine systems. Fish Manag Ecol 25: 240–252. [CrossRef] [Google Scholar]
- Froese R, Pauly D. 2024. FishBase. www.fishbase.org. [Google Scholar]
- Frossard V, Goulon C, Guillard J, Hamelet V, Jacquet S, Lainé L, Rautureau C, Rimet F, Tran-Khac V. 2022. Suivi de la qualité écologique du lac d’Annecy. Rapport 2021. SILA Éd INRA-Thonon, 47. [Google Scholar]
- Funge-Smith S, Bennett A. 2019. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish 20: 1176–1195. [CrossRef] [Google Scholar]
- Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences. Stat Sci 7: 457–472. [Google Scholar]
- Gerdeaux D, Janjua MY. 2009. Contribution of obligatory and voluntary fisheries statistics to the knowledge of whitefish population in Lake Annecy (France). Fish Res 96: 6–10. [CrossRef] [Google Scholar]
- Girard M, Goulon C, Tessier A, Vonlanthen P, Guillard J. 2020. Comparisons of day-time and night-time hydroacoustic surveys in temperate lakes. Aquat Living Resour 33: 9. [CrossRef] [EDP Sciences] [Google Scholar]
- Gislason H, Daan N, Rice JC, Pope JG. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11: 149–158. [CrossRef] [Google Scholar]
- Goodyear CP, Smith SJ, Hunt JJ, Rivard D. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Can Spec Publ Fish Aquat Sci 120: 67–81. [Google Scholar]
- Goulon C, Bourinet F, Guillard J. 2023. Principaux résultats du suivi halieutique concernant la population de corégone du Léman en 2022. rapport du groupe de recherche piscicole. Convention INRAE-DDT74. 27. [Google Scholar]
- Goulon C, Guillard J. 2022. Suivi halieutique du lac d'Annecy 2021. Convention Sila-DDT-ALP-PêcheursPro. 32. [Google Scholar]
- Griffiths CA, Winker H, Bartolino V, Wennhage H, Orio A, Cardinale M, 2023. Including older fish in fisheries management: a new age-based indicator and reference point for exploited fish stocks. Fish Fish 00: 1–20. [Google Scholar]
- Guillard J, Perga ME, Colon M, Angeli N. 2006. Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish Manag Ecol 13: 319–327. [Google Scholar]
- Gulland JA. 1970. The fish resources of the ocean. West Byfleet, Surrey, Fishing News (Books), Ltd., for FAO, 255 p. Rev. ed. of FAO Fish. Tech.Pap., (97):425 p. [Google Scholar]
- Hamelet V, Goulon C, Marchand F. 2022. Interpretation of age based on the scales of lacustrine Salmonidae, the common whitefish (Coregonus sp.) and the arctic char (Salvelinus alpinus). NOVAENuémro Spéc. 2: 4. [Google Scholar]
- Harford W, Crawford S, Coppaway CW. 2006. 2006 Saugeen Ojibway Nations commercial harvest TACs for lake whitefish (Coregonus clupeaformis) in Lake Huron. [Google Scholar]
- Harford W, Latremouille D, Crawford S. 2007. A Bayesian stock assessment of lake whitefish (Coregonus clupeaformis) in Lake Huron and evaluation of total allowable catch options for 2007 Saugeen Ojibway Nations commercial harvest. Chippewas Nawash Unceded First Nation Saugeen First Nation, 61. [Google Scholar]
- Harrison AJ, Kelly FL, Rosell RS, Champ TWS, Connor L, Girvan JR. 2010. First record and initial hydroacoustic stock assessment of pollan Coregonus autumanlis pallas in Lough Alle, Ireland. Biol Environ Proc R Ir Acad 110B: 69–74. [CrossRef] [Google Scholar]
- Heikinheimo O, Pekcan-Hekim Z, Raitaniemi J. 2014. Spawning stock-recruitment relationship in pikeperch Sander lucioperca (L.) in the Baltic Sea, with temperature as an environmental effect. Fish Res 155: 1–9. [Google Scholar]
- Hewitt DA, Hoenig JM. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fish Bull 103: 433. [Google Scholar]
- Hilborn R, Walters CJ. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Boston, MA: Springer US. [CrossRef] [Google Scholar]
- Hixon MA, Johnson DW, Sogard SM. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J Mar Sci 71: 2171–2185. [CrossRef] [Google Scholar]
- Hordyk A, Ono K, Sainsbury K, Loneragan N, Prince J. 2015. Some explorations of the life history ratios to describe length composition, spawning-per-recruit, and the spawning potential ratio. ICES J Mar Sci 72: 204–216. [CrossRef] [Google Scholar]
- Hsieh C, Yamauchi A, Nakazawa T, Wang W-F. 2010. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat Sci 216: 165–178. [CrossRef] [Google Scholar]
- Imbrock F, Appenzeller A, Eckmann R. 1996. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J Fish Biol 49: 1–13. [Google Scholar]
- Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, et al., 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–637. [CrossRef] [PubMed] [Google Scholar]
- Jacquet S, Cachera S, Crépin L, Goulon C, Guillard J, Hamelet V, Hustache JC, Laine L, Perney P, Raphy J, et al., 2022. Suivi environnemental des eaux du lac du Bourget pour l’année 2021. Rapport INRAE-CISALB. 174p. [Google Scholar]
- Jacquet S, Cachera S, Crépin L, Goulon C, Guillard J, Hamelet V, Hustache JC, Laine L, Perney P, Raphy J, et al., 2023. Suivi environnemental des eaux du lac du Bourget pour l’année 2022. 175p. [Google Scholar]
- Jacquet S, Domaizon I, Anneville O. 2014a. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget, and Geneva. Environ Monit Assess 186: 3455–3476. [CrossRef] [PubMed] [Google Scholar]
- Jacquet S, Kerimoglu O, Rimet F, Paolini G, Anneville O. 2014b. Cyanobacterial bloom termination: the disappearance of Planktothrix rubescens from Lake Bourget (France) after restoration. Freshw Biol 59: 2472–2487. [CrossRef] [Google Scholar]
- Janjua MY, Gerdeaux D. 2009. Preliminary trophic network analysis of subalpine Lake Annecy (France) using an Ecopath model. Knowl Manag Aquat Ecosyst 02. [CrossRef] [EDP Sciences] [Google Scholar]
- Jurvelius J, Marjomäki T, Hirvonen E, Lilja J, Riikonen R. 2006. Vendace (Coregonus albula) stock assessment in winter using a mobile echo-survey under ice. Boreal Environ Res 11: 415-420. [Google Scholar]
- Kangur K, Ginter K, Kangur A, Kangur P, Möls T. 2020. How did the late 1980s climate regime shift affect temperature-sensitive fish population dynamics: case study of vendace (Coregonus albula) in a large north-temperate lake. Water 12: 2694. [CrossRef] [Google Scholar]
- Keller V, Müller C. 2012. Breeding colonies of Great Cormorants Phalacrocorax carbo in Switzerland 2012. Swiss Ornithol. Inst. Sempach. [Google Scholar]
- Keskar A, Raghavan R, Kumkar P, Padhye A, Dahanukar N. 2017. Assessing the sustainability of subsistence fisheries of small indigenous fish species: fishing mortality and exploitation of hill stream loaches in India. Aquat Living Resour 30: 13. [CrossRef] [EDP Sciences] [Google Scholar]
- Kleisner K, Zeller D, Froese R, Pauly D. 2013. Using global catch data for inferences on the world’s marine fisheries. Fish Fish 14: 293–311. [CrossRef] [Google Scholar]
- Lappalainen A, Hyvönen J, Söderkultalahti P, Heikkinen J. 2020. Estimating annual CPUE indices for perch (Perca fluviatilis) from monthly logbook data of a gill-net fishery in the Bothnian Bay, Baltic Sea. BOREAL Environ Res 25: 91–103. [Google Scholar]
- Larijani M, Kordjazi Z, Patimar R, Bandani G, Ansari Z, Jafarian H. 2024. The management of common carp fisheries using spawning potential ratio in the southeast of the Caspian Sea. Fish Manag Ecol 31: e12660. [CrossRef] [Google Scholar]
- Legault CM, Brooks EN. 2013. Can stock-recruitment points determine which spawning potential ratio is the best proxy for maximum sustainable yield reference points? ICES J Mar Sci 70: 1075–1080. [CrossRef] [Google Scholar]
- Lemaire M, Guillard J, Anneville O, Lobry J. 2020. Major biomass fluctuations in lake food webs – an example in the peri-alpine Lake Annecy. J Gt Lakes Res 46: 798–812. [CrossRef] [Google Scholar]
- Linløkken A. 1995. Monitoring pelagic whitefish (Coregonus lavaretus) and vendace (Coregonus albula) in a hydroelectric reservoir using hydroacoustics. Regul Rivers Res Manag 10: 315–328. [CrossRef] [Google Scholar]
- Lorenzen K, Cowx IG, Entsua-Mensah REM, Lester NP, Koehn JD, Randall RG, So N, Bonar SA, Bunnell DB, Venturelli P, et al. 2016. Stock assessment in inland fisheries: a foundation for sustainable use and conservation. Rev Fish Biol Fish 26: 405–440. [CrossRef] [Google Scholar]
- Lukin AA, Sharova YN, Prishchepa BF. 2006. The impact of fishery on the state of populations of the European whitefish Coregonus lavaretus in Lake Imandra. J Ichthyol 46: 383–390. [CrossRef] [Google Scholar]
- Lyach R. 2020. The effect of fishing effort, fish stocking, and population density of overwintering cormorants on the harvest and recapture rates of three rheophilic fish species in central Europe. Fish Res 223: 105440. [CrossRef] [Google Scholar]
- Lynch AJ, Cooke SJ, Deines AM, Bower SD, Bunnell DB, Cowx IG, Nguyen VM, Nohner J, Phouthavong K, Riley B, et al. 2016. The social, economic, and environmental importance of inland fish and fisheries. Environ Rev 24: 115–121. [CrossRef] [Google Scholar]
- Lynch AJ, Taylor WW, Beard TD, Lofgren BM. 2015. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes. J Gt Lakes Res 41: 415–422. [CrossRef] [Google Scholar]
- Maunder MN, Sibert JR, Fonteneau A, Hampton J, Kleiber P, Harley SJ. 2006. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J Mar Sci 63: 1373–1385. [Google Scholar]
- Mehner T, Schulz M. 2002. Monthly variability of hydroacoustic fish stock estimates in a deep lake and its correlation to gillnet catches. J Fish Biol 61: 1109–1121. [CrossRef] [Google Scholar]
- Meyer R, Millar RB. 1999. Bayesian stock assessment using a state–space implementation of the delay difference model. Can J Fish Aquat Sci 56: 37–52. [Google Scholar]
- Moiron M, Rimet F, Girel C, Jacquet S. 2021. Die hard in Lake Bourget! The case of Planktothrix rubescens reborn. Ann Limnol Int J Limnol 57: 19. [CrossRef] [EDP Sciences] [Google Scholar]
- Mouget A, Goulon C, Axenrot T, Balk H, Lebourges-Dhaussy A, Godlewska M, Guillard J. 2019. Including 38 kHz in the standardization protocol for hydroacoustic fish surveys in temperate lakes. Remote Sens Ecol Conserv 5: 332–345. [CrossRef] [Google Scholar]
- Müller R, Breitenstein M, Bia MM, Rellstab C, Kirchhofer A. 2007. Bottom-up control of whitefish populations in ultra-oligotrophic Lake Brienz. Aquat Sci 69: 271–288. [CrossRef] [Google Scholar]
- Mullon C, Fréon P, Cury P. 2005. The dynamics of collapse in world fisheries. Fish Fish 6: 111–120. [CrossRef] [Google Scholar]
- Munyandorero J. 2012. A recruitment-mortality model in the precautionary management toolkit of African tropical inland, single-species fisheries. Fish Res 127–128: 26–33. [CrossRef] [Google Scholar]
- Myers JT, Yule DL, Jones ML, Ahrenstorff TD, Hrabik TR, Claramunt RM, Ebener MP, Berglund EK. 2015. Spatial synchrony in cisco recruitment. Fish Res 165: 11–21. [CrossRef] [Google Scholar]
- OFEV. 2016. Le lac de Neuchâtel - Qualité de l'eau du lac. Off. Fédéral Environ. OFEVDiv. Eaux,. [Google Scholar]
- OFEV. 2021. Statistiques de peche, Office Fédéral de l’Environnement. [Google Scholar]
- Østbye K, Bernatchez L, Næsje TF, Himberg K-JM, Hindar K. 2005. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol Ecol 14: 4371–4387. [CrossRef] [PubMed] [Google Scholar]
- Parent E, Rivot E. 2012. Introduction to hierarchical Bayesian modeling for ecological data. CRC Press. [CrossRef] [Google Scholar]
- Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J Mar Sci 39: 175–192. [CrossRef] [Google Scholar]
- Pauly D. 1985. Quelques méthodes simples pour l’estimation des stocks de poissons tropicaux. FAO Doc Tech Pêche 234: 56p. [Google Scholar]
- Pepin P. 2016. Reconsidering the impossible — linking environmental drivers to growth, mortality, and recruitment of fish. Can J Fish Aquat Sci 73: 205–215. [CrossRef] [Google Scholar]
- Perga M-É, Lainé L. 2010. Changes in the zooplankton of Lake Geneva. Rapp Comm Int Prot Eaux Léman Contre Pollut, Campagne 2009, 95–102. [Google Scholar]
- Pilling GM, Apostolaki P, Failler P, Floros C, Large PA, Morales-Nin B, Reglero P, Stergiou KI, Tsikliras AC. 2008. Assessment and management of data-poor fisheries. In Advances in Fisheries Science. John Wiley & Sons, Ltd, pp. 280–305. [Google Scholar]
- Pitcher TJ. 2015. Assessment and modelling in freshwater fisheries. In Freshwater Fisheries Ecology. John Wiley & Sons, Ltd, 483–499. [CrossRef] [Google Scholar]
- Plummer M. 2023. rjags: Bayesian Graphical Models using MCMC_. R package version 4–14, https://CRAN.R-project.org/package=rjags. [Google Scholar]
- Plummer M, Best N, Cowles K, Vines K. 2006. CODA: Convergence Diagnosis and Output Analysis for MCMC, R News, vol 6, 7–11. [Google Scholar]
- Probst WN, Thomas G, Eckmann R, 2009. Hydroacoustic observations of surface shoaling behaviour of young-of-the-year perch Perca fluviatilis (Linnaeus, 1758) with a towed upward-facing transducer. Fish Res 96: 133–138. [CrossRef] [Google Scholar]
- Rautureau C, Goulon C, Guillard J. 2022. In situ TS detections using two generations of echo-sounder, EK60 and EK80: the continuity of fishery acoustic data in lakes. Fish Res 249: 106237. [CrossRef] [Google Scholar]
- R Core Team. 2023. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. [Google Scholar]
- Richards LJ, Schnute JT. 1986. An experimental and statistical approach to the question: is CPUE an index of abundance? Can J Fish Aquat Sci 43: 1214–1227. [CrossRef] [Google Scholar]
- Ricker WE. 1940. Relation of ‘Catch per Unit Effort’ to abundance and rate of exploitation. J Fish Res Board Can 5a: 43–70. [CrossRef] [Google Scholar]
- Roberts BJ, Chucholl C, Brinker A. 2024. Coldwater, stenothermic fish seem bound to suffer under the spectre of future warming. J Gt Lakes Res 102351. [CrossRef] [Google Scholar]
- Rochet M-J, Trenkel VM. 2003. Which community indicators can measure the impact of fishing? A review and proposals. Can J Fish Aquat. Sci 60: 86–99. [CrossRef] [Google Scholar]
- Rook BJ, Lenart SJ, Caroffino DC, Muir A.M, Bronte CR. 2022. A 90-year record of lake whitefish Coregonus clupeaformis abundances in Michigan waters of the upper Laurentian Great Lakes. J Gt Lakes Res 48: 1618–1635. [CrossRef] [Google Scholar]
- Rosenberg AA. 2003. Managing to the margins: the overexploitation of fisheries. Front Ecol Environ 1: 102–106. [CrossRef] [Google Scholar]
- Sarvala J, Helminen H, Ventelä A-M. 2020. Overfishing of a small planktivorous freshwater fish, vendace (Coregonus albula), in the boreal lake Pyhäjärvi (SW Finland), and the recovery of the population. Fish Res 230, 105664. [CrossRef] [Google Scholar]
- Schnute J. 1985. A general theory for analysis of catch and effort data. Can J Fish Aquat Sci 42: 414–429. [CrossRef] [Google Scholar]
- Schnute J 1987. A general fishery model for a size-structured fish population. Can J Fish Aquat Sci 44, 924–940. [CrossRef] [Google Scholar]
- Scott BE, Marteinsdottir G, Begg GA, Wright PJ, Kjesbu OS. 2006. Effects of population size/age structure, condition and temporal dynamics of spawning on reproductive output in Atlantic cod (Gadus morhua). Ecol Model 191: 383–415. [CrossRef] [Google Scholar]
- Slipke JW, Martin AD, Pitlo JJr., Maceina MJ, 2002. Use of the spawning potential ratio for the upper Mississippi River channel catfish fishery. North Am J Fish Manag 22: 1295–1300. [CrossRef] [Google Scholar]
- Stewart TR, Mäkinen M, Goulon C, Guillard J, Marjomäki TJ, Lasne E, Karjalainen J, Stockwell JD. 2021. Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia 848: 4363–4385. [CrossRef] [Google Scholar]
- Stokes GL, Lynch AJ, Funge-Smith S, Valbo-Jørgensen J, Beard TD, Lowe BS, Wong JP, Smidt SJ. 2021. A global dataset of inland fisheries expert knowledge. Sci Data 8: 182. [CrossRef] [PubMed] [Google Scholar]
- Straile D, Eckmann R, Jüngling T, Thomas G, Löffler H. 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151: 521–529. [CrossRef] [PubMed] [Google Scholar]
- Swain DP. 2011. Life-history evolution and elevated natural mortality in a population of Atlantic cod (Gadus morhua). Evol Appl 4: 18–29. [CrossRef] [PubMed] [Google Scholar]
- Thorson JT, Munch SB, Cope JM, Gao J. 2017. Predicting life history parameters for all fishes worldwide. Ecol Appl Publ Ecol Soc Am 27: 2262–2276. [Google Scholar]
- Tran-Khac V, Quetin P, Anneville O’ 2021. Evolution physico-chimique des eaux du Léman et données météorologiques. Rapp Comm Int Pour Prot Eaux Léman Camp. 2020. [Google Scholar]
- Vainikka A, Jakubavičiūtė E, Hyvärinen P. 2017. Synchronous decline of three morphologically distinct whitefish (Coregonus lavaretus) stocks in Lake Oulujärvi with concurrent changes in the fish community. Fish Res 196: 34–46. [CrossRef] [Google Scholar]
- Vehanen T, Piria M, Kubecka J, Skov C, Kelly F, Pokki H, Eskelinen P, Rahikainen M, Keskinen T, Artell J, et al., 2020. Data collection systems and methodologies for the inland fisheries of Europe. FAO. [Google Scholar]
- Vetter EF. 1988. Estimation of natural mortality in fish stocks: a review. Fish Bull 86: 25–43. [Google Scholar]
- Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–362. [CrossRef] [PubMed] [Google Scholar]
- Walters C.J, Martell SJ. 2004. Fisheries ecology and management. Princeton, USA: Princeton University Press. [Google Scholar]
- Wedekind C, Vonlanthen P, de Guttry C, Stadelmann R, Stadelmann N, Pirat A, Perroud G. 2022. Persistent high hatchery recruitment despite advanced reoligotrophication and significant natural spawning in a whitefish. Glob Ecol Conserv 38: e02219. [Google Scholar]
- Welcomme RL, Cowx IG, Coates D, Béné C., Funge-Smith S, Halls A, Lorenzen K. 2010. Inland capture fisheries. Philos Trans R Soc B Biol Sci 365: 2881–2896. [CrossRef] [PubMed] [Google Scholar]
- Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag New York. [Google Scholar]
- Winfield IJ, Fletcher JM, James JB, 2008. The Arctic charr (Salvelinus alpinus) populations of Windermere, UK: population trends associated with eutrophication, climate change and increased abundance of roach (Rutilus rutilus). Environ Biol Fishes 83: 25–35. [CrossRef] [Google Scholar]
- Winfield IJ, Gerdeaux D. 2015. Fisheries in the densely populated landscapes of Western Europe. In Freshwater Fisheries Ecology. John Wiley & Sons, Ltd, 181–190. [CrossRef] [Google Scholar]
- Zischke MT, Bunnell DB, Troy CD, Berglund EK, Caroffino DC, Ebener MP, He JX, Sitar SP, Höök TO. 2017. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region. J Gt Lakes R., 43, 359–369. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.