Issue
Int. J. Lim.
Volume 60, 2024
Special issue - Biology and Management of Coregonid Fishes - 2023
Article Number 5
Number of page(s) 16
DOI https://doi.org/10.1051/limn/2024002
Published online 29 March 2024
  • Adams CE, Maitland PS. 1998. The ruffe population of Loch Lomond, Scotland: its introduction, population expansion, and interaction with native species. J Great Lakes Res 24: 249–262. [Google Scholar]
  • Adams CE, Lyle AA, Dodd JA, Bean CW, Winfield IJ, Gowans ARD, Stephen A, Maitland PS. 2014. Translocation as a conservation tool: case studies from rare freshwater fishes in Scotland. Glasg Nat 26: 17–24. [Google Scholar]
  • Adams CE, Bean CW, Dodd JA, Down A, Etheridge EC, Gowans ARD, Hooker O, Knudsen R, Lyle AA, Winfield IJ, Præbel K. 2016. Inter and intra-population phenotypic and genotypic structuring in the European whitefish Coregonus lavaretus, a rare freshwater fish in Scotland. J Fish Biol 88: 580–594. [Google Scholar]
  • Agardy TS. 1997. Marine Protected Areas and Ocean Conservation. Austin Texas, USA: Environmental Intelligence Unit, R.G. Landes Co. [Google Scholar]
  • Anderson NJ, Jeppesen E, Søndergaard M. 2005. Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshw Biol 50: 1589–1593. [Google Scholar]
  • Anneville O, Souissi S, Molinero JC, Gerdeaux D. 2009. Influences of human activity and climate on the stock-recruitment dynamics of whitefish, Coregonus lavaretus, in Lake Geneva. Fish Manage Ecol 16: 492–500. [Google Scholar]
  • Anneville O, Lasne E, Guillard J, Eckmann R, Stockwell JD, Gillet C, Yule DL. 2015. Impact of fishing and stocking practices on coregonid diversity. Food Nutr Sci 6: 1045–1055. [Google Scholar]
  • Baer J, Eckmann R, Rösch R, Arlinghaus R, Brinker A. 2017. Managing Upper Lake Constance Fishery in a multi-sector policy landscape: beneficiary and victim of a century of anthropogenic trophic change. In: Song AM, Bower SD, Onyango P, Cooke SJ, Chuenpagdee R. (Eds.), Too Big to Ignore, TBTI Publication Series E-01/2017, Canada: St. John's pp. 32–47. [Google Scholar]
  • Baer J, Spiessl C, Brinker A. 2022. Size matters? Species- and size-specific fish predation on recently established invasive quagga mussels Dreissena rostriformis bugensis Andrusov 1897 in a large, deep oligotrophic lake. J Fish Biol 100: 1272–1282. [Google Scholar]
  • Baer J, Kugler M, Schubert M, Schotzko N, Rösch R, Vonlanthen P, DeWeber JT. 2023. A matter of time- efficacy of whitefish stocking in a large pre-alpine lake. Fish Manage Ecol 30: 615–626. [Google Scholar]
  • Baetz A, Tucker TR, DeBruyne RL, Gatch A, Höök T, Fischer JL, Roseman EF. 2020. Review of methods to repair and maintain lithophilic fish spawning habitat. Water 12: 2501. [Google Scholar]
  • Bailey RM, Smith GR. 1981. Origin and geography of the fish fauna of the Laurentian Great Lakes basin. Can J Fish Aquat Sci 38: 1539–1541. [Google Scholar]
  • Bardel M. 1956. La pêche professionnelle des corégones dans les eaux françaises du lac Léman. Bulletin Français de Pisciculture 182: 26–36. [Google Scholar]
  • Bean CW, Adams CE, Winfield IJ. 2016. Vendace. In: Gaywood MJ, Boon PJ, Thompson DBA, Strachan IM. (Eds.), The Species Action Framework Handbook. Battleby, Perth: Scottish Natural Heritage, pp. 123–137. [Google Scholar]
  • Bennion DH, Manny BA. 2011. Construction of shipping channels in the Detroit River: history and environmental consequences. U.S. Geological Survey Scientific Investigation Report 2011–5122. [Google Scholar]
  • Bergström U, Berkström C, Sköld M. 2022. Long-Term Effects of No-Take Zones in Swedish Waters. Aqua Reports 2022:20. Swedish University of Agricultural Sciences. 289 pp. [Google Scholar]
  • Birk S, Chapman D, Carvalho L, et al. 2020. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat Ecol Evol 4: 1060–1068. [Google Scholar]
  • Bhat S, Amundsen P, Knudsen R, Gjelland K, Fevolden S, Bernatchez L, Praebel K. 2014. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. PLoS One 9: e91208. [Google Scholar]
  • Borcherding J, Heynen M, Jäger-Kleinicke T, Winter T, Eckmann R. 2010. Re-establishment of the North Sea houting in the River Rhine. Fish Manage Ecol 17: 291–293. [Google Scholar]
  • Bowlby JN, Hiriart-Baer VP, Blukacz-Richards EA, Yerubandi RR, Doka SE, Long TL, O'Connor KM. 2016. Evaluation of the remedial action plan goal for dissolved oxygen in Hamilton Harbour: a goal based on habitat requirements for Cisco. Aquat Ecosystem Health Manage 19: 134–140. [Google Scholar]
  • Brown EH, Rybicki RW, Poff RJ. 1985. Population dynamics and interagency management of the bloater (Coregonus hoyi) in Lake Michigan, Gt. Lakes Fish. Comm. Tech. Rep. No. 44.1967–1982 [Google Scholar]
  • Brown TA, Sethi SA, Rudstam LG, Holden JP, Connerton MJ, Gorsky D, Karboski CT, Chalupnicki MA, Sard NM, Roseman EF, Prindle SE, Sanderson MJ, Evans TM, Cooper A, Reinhart DJ, Davis C, Weidel BC. 2022. Contemporary spatial extent and environmental drivers of larval coregonine distributions across Lake Ontario. J Great Lakes Res 48: 359–370. [Google Scholar]
  • Bunnell DB, Madenjian CP, Croley II,TE. 2006. Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex ratio. Can J Fish Aquat Sci 63: 832–844. [Google Scholar]
  • Bunnell DB, Barbiero RP, Ludsin SA, Madenjian CP, Warren GJ, Dolan DM, et al. 2014. Changing ecosystem dynamics in the Laurentian Great Lakes: bottom-up and top-down regulation. Bioscience 64: 26–39. [Google Scholar]
  • Bunnell DB, Ackiss AS, Alofs KM, Brandt CO, Bronte CR, Claramunt RM, Dettmers JM, Honsey AE, Mandrak NE, Muir AM, Santucci VJ, Jr., Smith DR, Strach RM, Sweka JA, Weidel BC, Mattes WP, Newman KR. 2023. A science and management partnership to restore coregonine diversity to the Laurentian Great Lakes. Env Rev. 31: 716–738. [Google Scholar]
  • Burkhead NM. 2012. Extinction rates in North American freshwater fishes, 1900- 2010. Bioscience 62: 798–808. [Google Scholar]
  • Christie WJ. 1963. Effects of artificial propagation and the weather on recruitment in the Lake Ontario whitefish fishery. J Fish Res Board Can 20: 597–646. [Google Scholar]
  • Christie WJ. 1973. A review of the changes in the fish species composition of Lake Ontario. Great Lakes Fishery Commission Technical Report No. 23. [Google Scholar]
  • Christie GC, Goddard CI. 2003. Sea Lamprey International Symposium (SLIS II): advances in the integrated management of sea lamprey in the Great Lakes. J Great Lakes Res 29: 1–14. [Google Scholar]
  • Conley AK, Schlesinger D, Daley JG, Holst LK, Howard TG. 2021. Modeling habitat suitability and management options for maintaining round whitefish (Prosopium cylindraceum) in Adirondack ponds. Can. J Fish Aquat Sci 78: 1371–1382. [Google Scholar]
  • Convention on Biological Diversity (CBD). 2022. Kunming-Montreal Global Biodiversity Framework: CBD/COP/DEC/15/4. Available: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en. pdf. [Google Scholar]
  • COSEWIC. 2010. Update COSEWIC status report on Atlantic Whitefish Coregonus huntsmani in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa. x + 29 pp. [Google Scholar]
  • Cottrill A, Dunlop E, Lenart S, He J. 2020. Status of whitefishes and ciscoes in Lake Huron in 2018. In: S Riley SC, Ebener MP. C (Eds.), The state of Lake Huron in 2018, C Available from http://www.glfc.org/pubs/SpecialPubs/Sp20_01.pdf [ accessed 20 July 2023], 60–76. [Google Scholar]
  • Crotti M, Adams CE, Etheridge EC, Bean CW, Gowans ARD, Knudsen R, Lyle AA, Maitland PS, Winfield IJ, Elmer KR, Præbel K. 2020. Geographic hierarchical population genetic structuring in British European whitefish (Coregonus lavaretus) and its implications for conservation. Conserv Genet 21: 927–939. [Google Scholar]
  • Crotti M, Bean CW, Gowans ARD, Winfield IJ, Butowska M, Wanzenböck J, Bondarencko G, Præbel K, Adams CE, Elmer KR. 2021a. Complex and divergent histories gave rise to genome-wide divergence patterns amongst European whitefish (Coregonus lavaretus). J Evol Biol 34: 1954–1969. [Google Scholar]
  • Crotti M, Yohannes E, Winfield IJ, Lyle AA, Adams CE, Elmer KR. 2021b. Rapid adaptation through genomic and epigenomic responses following translocations in an endangered salmonid. Evol Appl 14: 2470–2489. [Google Scholar]
  • Cunningham AA. 1996. Disease risks of wildlife translocations. Cons Biol 10: 349–353. [Google Scholar]
  • Cunningham KE, Dunlop ES. 2023. Declines in lake whitefish larval densities after dreissenid mussel establishment in Lake Huron. J Great Lakes Res 49: 491–505. [Google Scholar]
  • Darwall WRT, Freyhof J. 2016. Lost fishes, who is counting? The extent of the threat to freshwater fish biodiversity. In: Closs GP, Krkosek M, Olden JD. (Eds.), Conservation of Freshwater Fishes, Cambridge, U. K. : Cambridge University Press, pp. 1-36. [Google Scholar]
  • De Groot SJ, Nijssen H. 1997. The North Sea houting, Coregonus oxyrinchus, back in the Netherlands (Pisces, Salmoniformes, Salmonidae). Bull Zool Mus Univ Van Amsterdam 16: 21–24. [Google Scholar]
  • de Leaniz CG, Fleming IA, Einum S, Verspoor E, Jordan WC, Conseugra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, Webb JH, Vøllestad LA, Villanueva B, Ferguson A, Quinn TP. 2007. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82: 173–211. [Google Scholar]
  • DeWeber JT, Baer J, Rösch R, Brinker A. 2022. Turning summer into winter: nutrient dynamics, temperature, density dependence and invasive species drive bioenergetic processes and growth of a keystone coldwater fish. Oikos: e09316. [Google Scholar]
  • Díaz S, Josef Settele J, Brondízio E, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman K, Butchart S, Chan K, Garibaldi L, Ichii K, Liu J, Subramanian SM, Midgley G, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin Y-J., Visseren-Hamakers I, Willis K, Zayas C. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf [Google Scholar]
  • Dottrens E. 1950. Le Corégone actuel du Léman. Revue Suisse de Zoologie 37: 789–813. [Google Scholar]
  • Douglas MR, Brunner PC. 2002. Biodiversity of central alpine Coregonus (Salmoniformes): impact of one-hundred years of management. Ecol Appl 12: 154–172. [Google Scholar]
  • Dierking J, Phelps L, Præbel K, Ramm G, Prigge E, Borcherding J, Brunke M, Eizaguirre C. 2014. Anthropogenic hybridization between endangered migratory and commercially harvested stationary whitefish taxa (Coregonus spp.). Evol Appl. doi.org/10.1111/eva.12166 [Google Scholar]
  • Ebener MP, Kinnunen RE, Schneeberger PJ, Mohr LC, Hoyle JA, Peeters P. 2008. Management of commercial fisheries for Lake Whitefish in the Laurentian Great Lakes of North America. In: Schechter MG, Taylor WW, Leonard NJ. (Eds.), International governance of fisheries ecosystems: learning from the past, finding solutions for the future. Symposium 62, Bethesda, Maryland: American Fisheries Society pp. 99–143. [Google Scholar]
  • Eckmann R. 2012. Massive stocking with hatchery larvae may constrain natural recruitment of whitefish stocks and induce unwanted evolutionary change. Adv Limnol 63: 325–336. [Google Scholar]
  • Elliott JA, Bell VA. 2011. Predicting the potential long-term influence of climate change on vendace (Coregonus albula) habitat in Bassenthwaite Lake, U.K. Freshw Biol 56: 395–405. [Google Scholar]
  • Eshenroder RL, Vecsei P, Mandrak NE, Yule DL, Gorman OT, Pratt TC, et al. 2016. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon. Great Lakes Fishery Commission Miscellaneous Publication 2016-01. Available from http://www.glfc.org/pubs/misc/Ciscoes_of_the_Laurentian_Great_Lakes_and_Lake_Nipigon.pdf [ accessed 12 July 2023]. [Google Scholar]
  • Etheridge EC, Bean CW, Maitland PW, Adams CE. 2010. Morphological and ecological responses to a conservation translocation of powan (Coregonus lavaretus) in Scotland. Aquat Cons: Mar Freshw Ecosystems 20: 274–281. [Google Scholar]
  • Etheridge EC, Bean CW, Adams CE. 2011. Substrate specific vulnerability of Scottish powan (Coregonus lavaretus) ova to predation by invasive ruffe (Gymnocephalus cernuus). Ecol Freshw Fish 20: 299–307. [Google Scholar]
  • Evans DO, Nicholls KH, Allen YC, McMurtry MJ. 1996. Historical land use, phosphorus loading, and loss of fish habitat in Lake Simcoe, Canada. Can J Fish Aquat Sci 53(Suppl 1): 194–218. [Google Scholar]
  • Fang X, Jiang L, Jacobson PC, Stefan HG, Alam SR, Pereira DL. 2012. Identifying Cisco refuge lakes in Minnesota under future climate scenarios. Trans Amer Fish Soc 141: 1608–1621. [Google Scholar]
  • Fischer J, Lindenmayer DB. 2000. An assessment of the published results of animal relocations. Biol Conserv 96: 1–11. [Google Scholar]
  • Fischer JL, Pritt JJ, Roseman EF, Prichard CG, Craig JM, Kennedy GW, Manny BA. 2018. Lake Sturgeon, Lake Whitefish, and Walleye egg deposition patterns with response to fish spawning substrate restoration in the St. Clair-Detroit River System. Trans Am Fish Soc 147: 79–93. [Google Scholar]
  • Fisheries and Oceans Canada. 2018. Recovery strategy for the Atlantic Whitefish (Coregonus huntsmani) in Canada. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. xiii + 62 pp. [Google Scholar]
  • Flagg TA, Nash CF. 1999. A conceptual framework for conservation hatchery strategies for Pacific salmonids. U.S. Department of Commerce. NOAA Technical Memorandum NMFS-NWFSC-38[online]. Available from https://repository.library.noaa.gov/view/noaa/3081 [ accessed 20 July 2023]. [Google Scholar]
  • Frei D, De-Kayne R, Selz O, Seehausen O, Feulner PGD. 2022. Genomic variation from an extinct species is retained in the extant radiation following speciation reversal. Nature Ecol Evol 6: 461–468. [Google Scholar]
  • Freyhof J, Schöter C. 2005. The houting Coregonus oxyrinchus(L.)(Salmoniformes: Coregonidae), a globally extinct species from the North Sea basin. J Fish Biol 67: 713–729. [Google Scholar]
  • Furlan EM, Gruber B, Attard CRM, Wager RNE, Kerezsy A, Faulks LK, Beheregaray LB, Unmack PJ. 2020. Assessing the benefits and risks of translocations in depauperate species: a theoretical framework with an empirical validation. J Appl Ecol 57: 831–841. [Google Scholar]
  • Gächter R. 1987. Lake restoration. Why oxygenation and artificial mixing cannot substitute for a decrease in the external phosphorus loading. Schweiz Z Hydrol 49: 170–185. [Google Scholar]
  • Gassner H, Hassan Y, Wanzenböck J. 2004. Adaptive management for a whitefish population exclusively exploited by anglers − first results after a test period of four years. Ann Zool Fenn 41: 367–373. [Google Scholar]
  • Gaywood MJ, Stanley-Price M. 2023. Moving species: reintroductions and other conservation translocations. In: Gaywood MJ, Ewen JG, Hollingsworth PM, Moehrenschlager A. (Eds.), Conservation Translocations. Cambridge: Cambridge University Press, pp. 3–42. [Google Scholar]
  • Gerdeaux D. 2004. The recent restoration of the whitefish fisheries in Lake Geneva: the roles of stocking, reoligotrophication, and climate change. Ann Zool Fennici 41: 181–189. [Google Scholar]
  • Gerdeaux D, Anneville O, Hefti D. 2006. Fishery changes during re-oligotrophication in 11 peri-Alpine Swiss and French lakes over the past 30 years. Acta Oecol 30: 161–167. [Google Scholar]
  • Gill D, Mascia M, Ahmadia G, et al. 2017. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543: 665–669. [Google Scholar]
  • Gugele SM, Baer J, Brinker A. 2020. The spatiotemporal dynamics of invasive three-spined sticklebacks in a large, deep lake and possible options for stock reduction. Fish Res 232: 105746. [Google Scholar]
  • Haakana H, Huuskonen H. 2012. The endangered whitefish (Coregonus lavaretus pallasi) population in the Koitajoki River, eastern Finland: the present state and threats. Adv Limnol 63: 519–533. [Google Scholar]
  • Hardy RS, Ross TJ, McDonnell KS, Quist MC, Holderman C, Stevens BS. 2022. Nutrient restoration of a large, impounded, ultra-oligotrophic western river to recover declining native fishes. North Amer J Fish Aquat Sci 42: 977–993. [Google Scholar]
  • Hertz M, Jensen LF, Pertoldi C, Aarestrup K, Thomsen SN, Alstrup AKO, Asmus H, Madsen SS, Svendsen JC. 2019. Investigating fish migration, mortality, and physiology to improve conservation planning of anadromous salmonids: a case study on the endangered North Sea houting (Coregonus oxyrinchus). Can J Zool 97: 1126–1136. [Google Scholar]
  • Hirsch PE, Eckmann R, Oppelt C, Behrmann-Godel J. 2013. Phenotypic and genetic divergence within a single whitefish form − detecting the potential for future divergence. Evol Appl 6: 1119–1132. [Google Scholar]
  • Holst L. 2023. Species Status Assessment for Round Whitefish. New York State Department of Environmental Conservation, 24 p. [Google Scholar]
  • Hondorp DW, Roseman EF, Manny BA. 2014. An ecological basis for future fish habitat restoration efforts in the Huron-Erie corridor. J Great Lakes Res 40: 23–30. [Google Scholar]
  • Hrabik TR, Magnuson JJ, McLain AS. 1998. Predicting the effects of rainbow smelt on native fishes in small lakes: evidence from long-term research on two lakes. Can J Fish Aquat Sci 55: 1364–1371. [Google Scholar]
  • Hudson AG, Vonlanthen P, Seehausen O. 2011. Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc Roy Soc B 278: 58–66. [Google Scholar]
  • Huuskonen H, Haakana H, Aho T. 2004. Stock transfer in vendace: an evaluation using microsatellite markers. Ann Zool Fennici 41: 69–74. [Google Scholar]
  • Ilmast N, Sterligova O. 2004. The results of the introduction of coregonid fishes into Vashozero, a lake in southern Karelia. Ann Zool Fennici 41: 191–194. [Google Scholar]
  • Jacobs A, Carruthers M, Eckmann R, Yohannes E, Adams CE, Behrmann-Godel J, Elmer KR. 2019. Rapid niche expansion by selection on functional genomic variation after ecosystem recovery. Nature Ecol Evol 3: 77–86. [Google Scholar]
  • Jacobson PC, Cross TK, Zandlo J, Carlson BN, Pereira DP. 2012. The effects of climate change and eutrophication on cisco Coregonus artedi abundance in Minnesota lakes. Adv Limnol 63: 417–427. [Google Scholar]
  • Jacobson PC, Fang X, Stefan HG, Pereira DL. 2013. Protecting cisco (Coregonus artedi Lesueuer) oxythermal habitat from climate change: building resilience in deep lakes using a landscape approach. Adv Limnol 64: 323–332. [Google Scholar]
  • Jeppesen E, Søndergaard M, Lauridsen TL, Davidson TA, Liu Z, Mazzeo N, Trochine C, et al. 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. In: Woodward G, Jacob U, O'Gorman EJ. (Eds.), Advances in Ecological Research. Cambridge, Massachusetts: Academic Press, pp. 411–488. [Google Scholar]
  • Jurvelius J, Auvinen H, Sikanen A, Auvinen S, Heikkinen T. 1995. Stock transfers of vendace (Corgonus albula L.) into Lake Puruvesi, Finland. Arch Hydrobiol Spec Issues Adv Limnol 46: 413–420. [Google Scholar]
  • Kahilainen KK, Østbye K, Harrod C, Shikano T, Malinen T, Merilä J. 2011. Species introduction promotes hybridization and introgression in Coregonus: is there sign of selection against hybrids? Mol Ecol 20: 3838–3855. [Google Scholar]
  • Kangur K, Ginter K, Kangur A, Kangur P, Möls T. 2020. How did the late 1980s climate regime shift affect temperature-sensitive fish population dynamics: case study of vendace (Coregonus albula) in a large north-temperate lake. Water 12: 2694. [Google Scholar]
  • Kao Y-C., Renauer-Bova RE, Bunnell DB, Gorman OT, Eshenroder RL. 2022. Distributions of Cisco (Coregonus artedi) in the upper Great Lakes in the mid-twentieth century, when populations were in decline. PLoS One 17: e0276109. [Google Scholar]
  • Karjalainen J, Heinimaa P, Marjomäki TJ, Taskinen J, Uusi-Heikkilä S. 2021. Preface of the 14th International Symposium on Biology and Management of Coregonid Fishes. Ann Zool Fennici 58:127. [Google Scholar]
  • Kiffney PM, Cram B, Faulds PL, Burton K, Koehler M, Quinn TP. 2018. Spatiotemporal patterns of mountain whitefish (Prosopium williamsoni) in response to a restoration of longitudinal connectivity. Ecol Freshw Fish 27: 1037–1053. [Google Scholar]
  • Koel TM, Arnold JL, Bigelow PE, Brenden TO, Davis JD, Detjens CR, Doepke PD, Ertel BD, Glassic HC, Gresswell RE, Guy CS, MacDonald DJ, Ruhl ME, Stuth TJ, Sweet DP, Syslo JM, Thomas NA, Tronstad LM, White PJ, Zale AV. 2020. Yellowstone Lake ecosystem restoration: a case study for invasive fish management. Fishes 5: 18. [Google Scholar]
  • Koelz W. 1929. Coregonid Fishes of the Great Lakes. U.S. Department of Commerce, Bureau of Fisheries Document no. 1048. [Google Scholar]
  • Kottelat M, Freyhof J. 2007. Handbook of European Freshwater Fishes. Berlin: Cornol, 646 p. [Google Scholar]
  • Kroes R, Winkel Y, Breeuwer JAJ, van Loon EE, Loader SP, Maclaine JS, Verdonschot PFM, van der Geest F HG. 2023. Phylogenetic analysis of museum specimens of houting Coregonus oxyrinchus shows the need for a revision of its extinct status. BMC Ecol Evol 23: 57. [Google Scholar]
  • Kumar R, Martell SJ, Pitcher TJ, Varkey DA. 2013. Temperature-driven decline of a cisco population in Mille Lacs Lake, Minnesota. N Am J Fish Manage 33: 669–681. [Google Scholar]
  • Lahti E, Oksman H, Shemeikka P. 1979. On the survival of vendace eggs in different lake types. Aqua Fenn 9: 62–67. [Google Scholar]
  • Lake Huron Technical Committee. 2023. Evaluation of survival and reproductive success of cultured cisco (Coregonus artedi) in west central Lake Huron. Available from http://www.glfc.org/pubs/lake_committees/huron/Lake%20Huron%20Cisco%20Stocking%20Evaluation%20Plan_Final.pdf [ accessed 20 July 2023]. [Google Scholar]
  • Leppi JC, Rinella DJ, Wipfli MS, Liljedahl AK, Seitz AC, Falke JA. 2023. Climate change risks to freshwater subsistence fisheries in Arctic Alaska: insights and uncertainty from Broad Whitefish Coregonus nasus. Fisheries. 48: 295–306. [Google Scholar]
  • Leskelä A, Jokikokko E, Huhmarniemi A, Siira A, Savolainen H. 2004. Stocking results of spray-marked one-summer old anadromous European whitefish in the Gulf of Bothnia. Ann Zool Fennici 41: 171–179. [Google Scholar]
  • Lim MY-T., Manzon RG, Somers CM, Boreham DR, Wilson JY. 2017. The effects of fluctuating temperature regimes on the embryonic development of lake whitefish (Coregonus clupeaformis). Comp Biochem Physiol Part A 214: 19–29. [Google Scholar]
  • Lindsey CC, Woods CS. 1970. Biology of Coregonid Fishes. Winnipeg, Canada: University of Manitoba Press. [Google Scholar]
  • Laurent PJ. 1972. Lac Léman: effects of exploitation, eutrophication, and introductions on the Salmonid community. J Fish Res Board Can 29: 867–875. [Google Scholar]
  • Luczynski M, Bodaly RA, Bond WA, Eckman R, Kamler E, Mills KH, Reist JD, Rösch R, Segner H, Todd TN. 1995. Preface- biology and management of coregonid fishes- 1993. Adv Limnol 46: iii. [Google Scholar]
  • Ludsin SA, Kershner MW, Blocksom KA, Knight RL, Stein RA. 2001. Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol Appl 11: 731–746. [Google Scholar]
  • Lyle AA, Bean CW, Honkanen HM, Koene JP, Adams CE. 2019. The establishment of Scotland's rarest freshwater fish, the vendace (Coregonus albula), in conservation refuge sites. Glasg Nat 27: 27–31. [Google Scholar]
  • Lyons J, Parks TP, Minahan KL, Ruesch AS. 2018. Evaluation of oxythermal metrics and benchmarks for the protection of cisco (Coregonus artedi) habitat quality and quantity in Wisconsin lakes. Can J Fish Aquat Sci 75: 600–608. [Google Scholar]
  • Madenjian CP, Rutherford ES, Blouin MA, Sederberg BJ, Elliott JR. 2011. Spawning habitat unsuitability: an impediment to cisco rehabilitation in Lake Michigan? North Am J Fish Manage 31: 905–913. [Google Scholar]
  • Magris RA, Andrello M, Pressey RL, Mouillot D, Dalongeville A, Jacobi MN, Manel S. 2018. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Cons Lett 11: e12439. [Google Scholar]
  • Maitland PS, Lyle AA. 1990. Practical conservation of British fishes: current action on six declining species. J Fish Biol 37(Suppl. A): 255–256. [Google Scholar]
  • Maitland PS, Lyle AA. 1992. Conservation of freshwater fish in the British Isles: proposals for management. Aquat Cons Mar Freshw Ecosyst 2: 165–183. [Google Scholar]
  • Maitland PS. 2007. Scotland's Freshwater Fish: Ecology, Conservation and Folklore. Oxford, U.K.: Trafford Publishing, 436 p. [Google Scholar]
  • Maitland PS, Lyle AA. 2013. Ex situ and in situ approaches, including assisted reproduction, for the conservation of native species of charr (Salmonidae) and whitefish (Coregonidae) in Scotland. Int Zoo Yearb 47: 129–139. [Google Scholar]
  • Manny BA, Roseman EF, Kennedy G, Boase JC, Craig JM, Bennion DH, Read J, Vaccaro L, Chiotti J, Drouin R, Ellison R. 2015. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit rivers of the Laurentian Great Lakes. Restor Ecol 23: 149–156. [Google Scholar]
  • Marchetti MP, Moyle PB, Levine R. 2004. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California. Freshw Biol 49: 646–661. [Google Scholar]
  • Meng HJ, Müller R. 1988. Assessment of the functioning of a whitefish (Coregonus sp.) and char (Salvelinus alpinus L.) spawning ground modified by gravel extraction. Finnish Fish Res 9: 477–484. [Google Scholar]
  • McMillan JR, Morrison B, Chambers N, Ruggerone G, Bernatchez L, Stanford J, Neville H. 2023. A global synthesis of peer-reviewed research on the effects of hatchery salmonids on wild salmonids. Fish Manag Ecol 30: 446–463. [Google Scholar]
  • Moilanen A, Franco AMA, Early RI, Fox R, Wintle B, Thomas CD. 2005. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc Royal Soc B Biol Sci 272: 1885–1891. [Google Scholar]
  • Morris SD, Brook BW, Moseby KE, Johnson CN. 2021. Factors affecting success of conservation translocations of terrestrial vertebrates: a global systematic review. Global Ecol Conserv 28: e 01630. [Google Scholar]
  • Müller R. 1992. Trophic state and its implications for natural reproduction of salmonid fish. Hydrobiologia 243/244: 261–268. [Google Scholar]
  • Müller R, Stadelmann P. 2004. Fish habitat requirements as the basis for rehabilitation of eutrophic lakes by oxygenation. Fish Manag Ecol 11: 251–260. [Google Scholar]
  • Müller R. 2007. The re-discovery of the vanished ‘Edelfisch’ Coregonus nobilis Haack, 1882, in Lake Lucerne, Switzerland. Adv Limnol 60: 419–430. [Google Scholar]
  • Myers JT, Jones ML, Stockwell JD, Yule DL. 2009. Reassessment of the predatory effects of rainbow smelt on ciscoes in Lake Superior. Trans Am Fish Soc 138: 1352–1368. [Google Scholar]
  • Naish KA, Taylor JE, Levin PS, Quinn TP, Winton JR, Huppert D, Hilborn R. 2007. An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Adv Mar Biol 53: 61–194. [Google Scholar]
  • Nümann W. 1972. The Bodensee: effects of exploitation and eutrophication on the salmonid community. J Fish Res Bd Can 29: 833–847. [Google Scholar]
  • O'Connor JE, Duda JJ, Grant GE. 2015. 1000 dams down and counting. Science 348: 496–497. [Google Scholar]
  • Owens PN, Rickson RJ, Clarke MA. 2006. Scoping study of soil loss through wind erosion, tillage erosion and soil co-extracted with root vegetables. Objective 3 deliverable: Review of how appropriate current mechanisms and advice on best practice for control and mitigation of erosion is to wind, tillage co-extraction with root vegetables in England and Wales, and consideration of alternative methods and advice. Defra project SP08007. Final Report. Report to Department for Environment, Food and Rural Affairs, 71 pp. [Google Scholar]
  • Paukert CP, Glazer BA, Hansen GJA, Irwin BJ, Jacobson PC, Kershner JL, Shuter BJ, Whitney JE, Lynch AJ. 2016. Adapting inland fisheries management to a changing climate. Fisheries 41: 374–384. [Google Scholar]
  • Præbel K, Bean C, Dodd J, Etheridge E, Gowans A, Knudsen R, Lyle A, Maitland P, Winfield I, Adams C. 2021. Allelic losses and gains during translocations of a high conservation value fish, Coregonus lavaretus. Aquat Cons 31: 2575–2585. [Google Scholar]
  • Radinger J, Matern S, Klefoth T, Wolter C, Feldhege F, Monk CT, Arlinghaus R. 2023. Ecosystem-based management outperforms species-focused stocking for enhancing fish populations. Science 379: 946–951. [Google Scholar]
  • Reid AJ, Carlson AK, Reed IF, et al. 2018. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94: 849–873. [Google Scholar]
  • Reynolds SA, Aldridge DC. 2021. Global impacts of invasive species on the tipping points of shallow lakes. Glob Change Biol 27: 6129–6138. [Google Scholar]
  • Rösch R, Baer J, Brinker A. 2018. Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake Constance. Hydrobiologia 824: 243–254. [Google Scholar]
  • Ruhlé VC. 1977. Biologie und Bewirtschaftung des Seesaiblings (Salvelinus alpinus L.) im Zugersee. Schweizerische Zeitschrift für Hydrologie 39: 12–45. [Google Scholar]
  • Sainsbury AW, Vaughan-Higgins RJ. 2012. Analyzing disease risks associated with translocations. Cons Biol 26: 442–452. [Google Scholar]
  • Salmaso N, Anneville O, Straile D, Viaroli P. 2018. European large perialpine lakes under anthropogenic pressures and climate change: present status, research gaps and future challenges. Hydrobiol 824: 1–32. [Google Scholar]
  • Salojärvi K. 1992. The role of compensatory processes in determining the yield from whitefish (Coregonus lavaretus) stocking in inland waters in northern Finland. Finnish Fish Res 13: 1–30. [Google Scholar]
  • Sandlund OT, Hesthagen T, Braband A. 2013. Coregonid introductions in Norway: well-intended and successful, but destructive. Adv Limnol 64: 345–362. [Google Scholar]
  • Sandström A, Asp A, Bergek S, Johansson M, Petersson E, Ragnarsson Stabo H. 2016. Closed fishing in lakes, Aqua Reports 2016: 12, Available: https://publications.slu.se/?file=publ/show&id=80430 [Google Scholar]
  • Sass GG, Rypel AL, Stafford JD. 2017. Inland fisheries habitat management: lessons learned from wildlife ecology and a proposal for change. Fisheries 42: 197–209. [Google Scholar]
  • Saunders DL, Meeuwig JJ, Vincent CJ. 2002. Freshwater protected areas: strategies for conservation. Cons Biol 16: 30–41. [Google Scholar]
  • Schaefer HM, Honsey AE, Bunnell DB, Weidel BC, DeBruyne R, Diana JS, et al. 2022. Predicting physical and geomorphic habitat associated with historical lake whitefish and cisco spawning locations in Lakes Erie and Ontario. J Great Lakes Res 48: 1636–1646. [Google Scholar]
  • Seddon PJ. 2023. The role of conservation translocations in rewilding and de-extinction. In: Gaywood MJ, Ewen JG, Hollingsworth PM, Moehrenschlager A. (Eds.), Conservation Translocations. Cambridge, Massachusetts: Cambridge University Press, pp. 354–378. [Google Scholar]
  • Selz OM, Seehausen O. 2023. A taxonomic revision of ten whitefish species from the lakes Lucerne, Sarnen, Sempach and Zug, Switzerland, with descriptions of seven new species (Teleostei, Coregonidae). ZooKeys 1144: 95–169. [Google Scholar]
  • Simberloff D. 2013. Invasive Species: What Everyone Needs to Know. New York: Oxford University Press. [Google Scholar]
  • Smirnov VV. 1992. Intraspecific structure of Baikal Omul, Coregonus autumnalis migratorius (Georgi). Pol Arch Hydrobiol 39: 325–333. [Google Scholar]
  • Smith SH. 1964. Status of the deepwater cisco population of Lake Michigan. Trans Am Fish Soc 93: 155–163. [Google Scholar]
  • Steinbacher P, Wanzenböck J, Brandauer M, Holper R, Landertshammer J, Mayr M, Platzl C, Stoiber W. 2017. Thermal experience during embryogenesis contributes to the induction of dwarfism in whitefish Coregonus lavaretus. PLoS One 12: e0185384. [Google Scholar]
  • Steinhart GB, Mineau M, Kraft CE. 2007. Status and Recovery of Round Whitefish (Prosopium cylindraceum) in New York, USA. Ithaca, N.Y.: Department of Natural Resources, Cornell University. [Google Scholar]
  • Steinmann P. 1950. Monographie der schweizerischen koregonen. Beitrag zum problem der entstehung neuer arten. Spezieller teil. Schweiz Z Hydrobiol 12: 340–491. [Google Scholar]
  • Stewart TR, Vinson MR, Stockwell JD. 2022. Effects of warming winter embryo incubation temperatures on larval cisco (Coregonus artedi) survival, growth, and critical thermal maximum. J Great Lakes Res 48: 1042–1049. [Google Scholar]
  • Stockwell CA, Mulvey M, Vinyard GL. 1996. Translocations and the preservation of allelic diversity. Cons Biol 10: 1133–1141. [Google Scholar]
  • Strayer DL, Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress and future challenges. J North Amer Benth Soc 29: 344–358. [Google Scholar]
  • Svärdson G. 1976. Interspecific population dominance in fish communities of Scandinavian lakes. Rep Inst Freshwat Res 55: 144–171. [Google Scholar]
  • Svarvar P-O., Müller R. 1982. Die Felchen des Alpnachersees. Schweizerische Zeitschrift für Hydrologie 44: 295–314. [Google Scholar]
  • Tallman R, Howland K, Rennie M, Mills K. 2012. Foreword: biology and management of coregonid fishes- 2008. Adv Limnol 63: vii–viii. [Google Scholar]
  • Thomas R, Fletcher JM, James JB, Winfield IJ. 2013. Assessment and conservation of gwyniad (Coregonus lavaretus (L.)) in Llyn Tegid, U.K.: persistence in the face of eutrophication, water level fluctuations, and ruffe (Gymnocephalus cernuus (L.)) introductions. Adv Limnol 64: 363–376. [Google Scholar]
  • Tolentino S, Moon M. 2012. Artificial reef construction and use by three endemic coregonid whitefishes in Bear Lake, Utah, USA. Adv Limnol 63: 535–546. [Google Scholar]
  • Urpanen O, Keskinen T, Marjomäki T, Sakomaa V, Salo H, Syrjänen J, Viljanen M, Karjalainen J. 2012. Effects of mass fish removal on coregonid larval abundance in a large mesotrophic lake. Adv Limnol 63: 383–395. [Google Scholar]
  • Vaccaro L, Bennion D, Boase J, Bohling M, Chiotti J, Craig J, Drouin R, Fischer J, Kennedy G, Manny B, Read J, Roseman E, Thomas M. 2016. Science in Action: Lessons Learned from Fish Spawning Habitat Restoration in the St. Clair and Detroit rivers. University of Michigan, MICHU-16-501, Ann Arbor. [Google Scholar]
  • Ventling-Schwank A, Müller R. 1991. Survival of coregonid (Coregonus sp.) eggs in Lake Sempach, Switzerland. Verh Int Verein Limnol 24: 2451–2454. [Google Scholar]
  • Ventling-Schwank AR, Livingstone DM. 1994. Transport and burial as a cause of whitefish (Coregonus spp.) egg mortality in a eutrophic lake. Can J Fish Aquat Sci 51: 1909–1919. [Google Scholar]
  • Verspoor E, Stradmeyer L, Nielsen JL. 2007. The Atlantic Salmon: Genetics, Conservation, and Management. Oxford: Blackwell Publishing. [Google Scholar]
  • Vonlanthen P, Bittner D, Hudson A, et al. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482: 357–362. [Google Scholar]
  • Vonlanthen P, Kreienbühl T, Périat G. 2019. Standardized Fishing on Lake Sempach- Results of the Surveys from September 2019. Aquabios GmbH. Client: Canton of Lucerne, Agriculture and Forestry Department, Sursee. [Google Scholar]
  • Wahl B, Löffler H. 2009. Influences on the natural reproduction of whitefish (Coregonus lavaretus) in Lake Constance. Can J Fish Aquat Sci 66: 547–556. [Google Scholar]
  • Walsh JR, Carpenter SR, Vander Zanden MJ. 2016. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc Nat Acad Sci 113: 4081–4085. [Google Scholar]
  • Walters CJ, Martell SJD. 2004. Fisheries Ecology and Management. Princeton, New Jersey, USA: Princeton University Press. [Google Scholar]
  • Wanke T, Brämick U, Mehner T. 2016. Early detection of reproduction deficits and the compensatory potential of enhancement stocking for vendace, Coregonus albula, fisheries in German lakes. Fish Manage Ecol 23: 55–65. [Google Scholar]
  • Wanke T, Brämick U, Mehner T. 2017. High stock density impairs growth, female condition and fecundity, but not quality of early reproductive stages in vendace (Coregonus albula). Fish Res 186: 159–167. [Google Scholar]
  • Wanzenböck J, Gassner H, Hassan Y, Lahnsteiner B, Hauseder G. 2002. Ecology of Coregonus lavaretus in two Austrian lakes in relation to fisheries management and lake productivity. In: Cowx IG. (Ed.), Management and Ecology of Lake and Reservoir Fisheries. Oxford: Blackwell Science pp. 58-69. [Google Scholar]
  • Wanzenböck J, Winfield IJ. 2013. Foreword: biology and management of coregonid fishes- 2011. Adv Limnol 64: vii–viii. [Google Scholar]
  • Waples RS. 1991. Genetic interactions between hatchery and wild salmonids: lessons from the Pacific northwest. Can J Fish Aquat Sci 48 (Suppl. 1): 124–133. [Google Scholar]
  • Wedekind C, Vonlanthen P, de Guttry C, Stadelman R, Stadelman N, Pirat A, Perroud G. 2022. Persistent high hatchery recruitment despite advanced reoligotrophication and significant natural spawning in a whitefish. Glob Ecol Cons 38: e02219. [Google Scholar]
  • Weidel BC, Ackiss AS, Chalupnicki MA, Connerton MJ, Davis S, Dettmers JM, et al. 2022. Results of the collaborative Lake Ontario bloater restoration stocking and assessment, 2012- 2020. J Great Lakes Res 48: 371–380. [Google Scholar]
  • Weidel BC, Davis C, Lachance H, O'Malley BP, Sard NM, Gatch AJ, Osborne C, Lantry BF. 2023. Field and laboratory validation of new sampling gear to quantify Coregonine egg deposition and larval emergence across spawning habitat gradients. J Great Lakes Res 49: 1059–1068. [Google Scholar]
  • Wells L, McLain AL. 1973. Lake Michigan—man's effects on native fish stocks and other biota. Gt. Lakes Fish. Comm. Tech. Rep. No. 20. [Google Scholar]
  • Winfield IJ, Fletcher JM, Cubby PR. 1997. Introduction of Haweswater Schelly to Blea Water and Small Water. Final Report. Report to Environment Agency, North West Region and North West Water Limited. WI/ T11063Z7/2. 29 pp. [Google Scholar]
  • Winfield IJ, Rösch R, Appelberg M, Kinnerbäck A, Rask M. 1998. Recent introductions of the Ruffe (Gymnocephalus cernuus) to Coregonus and Perca lakes in Europe and an analysis of their natural distributions in Sweden and Finland. J Great Lakes Res 24: 235–248. [Google Scholar]
  • Winfield IJ, Fletcher JM, Winfield DK. 2002. Conservation of the endangered whitefish, Coregonus lavaretus, population of Haweswater, U.K. In: Cowx IG. (Ed.), Management and Ecology of Lake and Reservoir Fisheries. Oxford: Blackwell Science, pp. 232–241. [Google Scholar]
  • Winfield IJ, Fletcher JM, James BJ. 2003. Monitoring of the Schelly of Haweswater, April 2002 to March 2003. Final Report. Report to United Utilities. WI/C01512/6. 51 pp. [Google Scholar]
  • Winfield IJ. 2004. Fish in the littoral zone: ecology, threats and management. Limnologica 34: 124–131. [Google Scholar]
  • Winfield IJ, Durie NC. 2004. Fish introductions and their management in the English Lake District. Fish Manage Ecol 11: 195–201. [Google Scholar]
  • Winfield IJ, Fletcher JM, James BJ. 2006. Ecology and management of vendace spawning grounds. Final Report. Report to Environment Agency, North West Region. LA/C02998/3. 62 pp. [Google Scholar]
  • Winfield IJ, Fletcher JM, James JB. 2008. A review of recent research and translocation activities concerned with the gwyniad of Llyn Tegid. Final Report. NERC/Centre for Ecology and Hydrology, 40pp. (CCW Contract Science Report No. 840.) [Google Scholar]
  • Winfield IJ, Adams CE, Bean CW, Durie NC, Fletcher JM, Gowans AR, Harrod C, James JB, Lyle AA, Maitland PS, Thompson C, Verspoor E. 2012. Conservation of the vendace (Coregonus albula), the U.K.'s rarest freshwater fish. Adv Limnol 63: 547–559. [Google Scholar]
  • Winfield IJ, Bean CW, Gorst J, Gowans ARD, Robinson M, Thomas R. 2013a. Assessment and conservation of whitefish (Coregonus lavaretus L) in the U.K. Adv Limnol 64: 305–321. [Google Scholar]
  • Winfield IJ, Adams CE, Bean CW, Durie NC, Fletcher JM, Gowans ARD, Harrod C, James JB, Lyle AA, Maitland PS, Thompson C, Verspoor E. 2013b. Positive steps for conservation of the vendace (Coregonus albula), the U.K.'s rarest freshwater fish. Newsletter of the Freshwater Fish Specialist Group 1: 14–15. [Google Scholar]
  • Winfield IJ, Fletcher JM, James JB. 2013c. Llyn Arenig Fawr gwyniad survey 2012. Final report. Lancaster, NERC/Centre for Ecology & Hydrology, 32pp. (CEH Project No: C03569, CCW Contract Science Report no. 1013) [Google Scholar]
  • Winkler KA, Pamminger-Lahnsteiner B, Wanzenböck J, Weiss S. 2011. Hybridization and restricted gene flow between native and introduced stocks of Alpine whitefish (Coregonus sp.) across multiple environments. Mol Ecol 20: 456–472. [Google Scholar]
  • Wood J. 2016. Current status of lake whitefish. Resource management documents. State of Maine Paper 14. Available: http://digitalmaine.com/brm_docs/14 [Google Scholar]
  • Zuccarino-Crowe CM, Taylor WW, Hansen MJ, Seider MJ, Krueger CC. 2016. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior. J Great Lakes Res 42: 1092–1101. [Google Scholar]
  • Zuromska H. 1982. Conditions of natural reproduction of Coregonus albula (L.) and Coregonus lavaretus (L.). Pol Arch Hydrobiol 29: 1–28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.