Free Access
Issue |
Int. J. Lim.
Volume 58, 2022
|
|
---|---|---|
Article Number | 4 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/limn/2022004 | |
Published online | 25 May 2022 |
- Amorim CA, de Moura-Falcão, Valenca CR. 2019. Allelopathic effects of the aquatic macrophyte Ceratophyllum demersum L. on phytoplankton species: contrasting effects between cyanobacteria and chlorophytes. Acta Limnologica Brasiliensia 31: e21. [CrossRef] [Google Scholar]
- Amorim CA, Moura AN. 2020. Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir. Environ Pollu 265: 114997. [CrossRef] [Google Scholar]
- Bisova K, Zachleder V. 2014. Cell-cycle regulation in green algae dividing by multiple fission. J Exp Bot 65: 2585–2602. [CrossRef] [PubMed] [Google Scholar]
- Bittencourt-Oliveira MDC, Chia MA, Camargo-Santos D, Dias CTS. 2016. The effect of saxitoxin and non-saxitoxin extracts of Cylindrospermopsis raciborskii (cyanobacteria) on cyanobateria and green microalgae. J Appl Phycol 28: 241–250. [CrossRef] [Google Scholar]
- Boraas ME, Seale DB, Boxhorn JE. 1998. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol Ecol 12: 153–164. [CrossRef] [Google Scholar]
- Chang MY, Dong J, Li CL, et al. 2020. Allelopathic effect of the macrophyte Potamogeton crispus on colony formation of Chlorella vulgaris and Oocystis sp. J Hydroecology 41: 91–97 (In Chinese). [Google Scholar]
- Cheloni G, Slaveykova VI. 2021. Morphological plasticity in Chlamydomonas reinhardtii and acclimation to micropollutant stress. Aquat Toxicol 231: 105711. [CrossRef] [PubMed] [Google Scholar]
- Chen DH. 1999. Studies on interspecies competition and biological process of formation of cyanobacterial blooms. PhD thesis, Institute of Hydrobiologia, Chinese Academic of Sciences, Wuhan. [Google Scholar]
- Chen J, Xie P, Li L, Xu J. 2009. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci 108: 81–89. [CrossRef] [PubMed] [Google Scholar]
- Dong J, Chang MY, Li CL, Dai DJ, Gao YN. 2019. Allelopathic effects and potential active substances of Ceratophyllum demersum L. on Chlorella vulgaris Beij. Aquat Ecol 53: 651–663. [CrossRef] [Google Scholar]
- Dong J, Gao YN, Chang MY, et al. 2018. Colony formation by the green alga Chlorella vulgaris in response to the competitor Ceratophyllum demersum. Hydrobiologia 805: 177–187. [CrossRef] [Google Scholar]
- Dong J, Li CL, Chang MY, et al. 2019. Effects of toxic cyanobacterium Microcystis aeruginosa on the morphology of green alga Chlorella vulgaris. Ann Limnol -Int J Lim 55: 7. [CrossRef] [EDP Sciences] [Google Scholar]
- Dong J, Lu JJ, Li GB, Song LR. 2013. Influences of a submerged macrophyte on colony formation and growth of a green alga. Aquat Biol 19: 265–274. [CrossRef] [Google Scholar]
- Fisher RM, Bel T, West SA. 2016. Multicellular group formation in response to predators in the algae Chlorella vulgaris. J Evol Biol 29: 551–559. [CrossRef] [PubMed] [Google Scholar]
- Herron MD, Borin JM, Boswell JC, et al. 2019. De novo origins of multicellularity in response to predation. Sci Rep-UK 9: 2328. [CrossRef] [Google Scholar]
- Hessen DO, Van Donk E. 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Archiv für Hydrobiol 127: 129–140. [CrossRef] [Google Scholar]
- Huang Y, Cui GL, Li BP, Zhu XX, Yang Z. 2018. Elevated atmospheric CO2 enhances grazer-induced morphological defense in the freshwater green alga Scenedesmus obliquus. Limnol Oceanogr 63: 1004–1014. [CrossRef] [Google Scholar]
- Huang Y, Nan HH, Zhu XX, Li BP, Zhang Z, Yang Z. 2016. Waterborne copper impairs grazer-induced colony formation and phytosynthetic efficiency in Scenedesmus obliquus. Limnol Oceanogr 61: 625–634. [CrossRef] [Google Scholar]
- Khona DK, Shirolikar SM, Gawde KK, Hom E, Deodhar MA, D’Souza JS. 2016. Characterization of salt stress-induced palmelloids in the green alga, Chlamydomonas reinhardtii. Algal Res 16: 434–448. [CrossRef] [Google Scholar]
- Körner S, Nicklisch A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38: 862–871. [CrossRef] [Google Scholar]
- Leflaive J, Lacroix G, Nicaise Y, Ten-Hage L. 2008. Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales). Environ Microb 10: 1536–1546. [CrossRef] [Google Scholar]
- Li JY, Li CH, Lan CQ, Liao DK. 2018. Effects of sodium bicarbonate on cell growth, lipid accumulation and morphology of Chlorella vulgaris. Microb Cell Fact 17: 111. [CrossRef] [PubMed] [Google Scholar]
- Li M, Gao L, Lin L. 2015. Specific growth rate, colonial morphology and extracellular polysaccharides (EPS) content of Scenedesmus obliquus grown under different levels of light limitation. Ann Limnol - Int J Lim 51: 329–334. [CrossRef] [EDP Sciences] [Google Scholar]
- Li M, Zhu W, Dai XX, Li XY. 2013. Effects of linear alkylbenzene sulfonate on extracellular polysaccharide content and cells per particle of Microcystis aeruginosa and Scenedesmus obliquus. Fresen Environ Bull 22: 1189–1194. [Google Scholar]
- Lichtenthaler HK, Buschmann C. 2001. “Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy,” in Current Protocols in Food Analytical Chemistry, eds Wrolstad, RE, Acree, TE, An, H., Decker, EA, Penner, MH, Reid, DS, Schwartz, SJ, Shoemaker, CF, Sporns, P. (London; New York, NY: John Wiley & Sons, Inc.), F 4.3.1-F 4.3.8. [Google Scholar]
- Lürling M. 2021. Grazing resistance in phytoplankton. Hydrobiologia 848: 237–249. [CrossRef] [Google Scholar]
- Lürling M, Beekman W. 2002. Extractable substances (anionic surfactants) from membrane filters induced morphological changes in the green alga Scenedesmus obliquus (Chlorophyceae). Environ Toxicol Chem 21: 1213–1218. [CrossRef] [PubMed] [Google Scholar]
- Lürling M, Beekman W. 2006. Palmelloids formation in Chlamydomonas reinhardtii: defence against rotifer predators? Int J Limnol 42: 65–72. [CrossRef] [EDP Sciences] [Google Scholar]
- Lürling M, Van Donk E. 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88: 111–118. [CrossRef] [Google Scholar]
- Lurling M, Van Donk E. 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol Oceanogr 42: 783–788. [CrossRef] [Google Scholar]
- Lürling M, Van Geest G, Scheffer M. 2006. Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia 556: 209–220. [CrossRef] [Google Scholar]
- Mohamed ZA. 2008. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 17: 504–516. [CrossRef] [PubMed] [Google Scholar]
- Mohamed ZA. 2017. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management – a review. Limnologica 63: 122–132. [CrossRef] [Google Scholar]
- Mulderij G, Mooij WM, Van Donk E. 2005. Allelopathic growth inhibition and colony formation of the green alga Scenedesmus obliquus by the aquatic macrophyte Stratiotes aloides. Aquat Ecol 39: 11–21. [CrossRef] [Google Scholar]
- Omidi A, Esterhuizen-Londt M, Pflugmacher S. 2018. Still challenging: the ecological function of the cyanobacterial toxin microcystin- what we know so far. Toxin Rev 37: 87–105. [CrossRef] [Google Scholar]
- Pakdel FM, Sim L, Bearda J, Davis J. 2013. Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat Bot 110: 24–30. [CrossRef] [Google Scholar]
- Pan Y, Liu CG, Li F, et al. 2017. Norfloxacin disrupts Daphnia magna-induced colony formation in Scenedesmus quadricauda and facilitates grazing. Ecol Eng 102: 255–261. [CrossRef] [Google Scholar]
- Pančić M, Kiørboe T. 2018. Phytoplankton defence mechanisms: traits and trade-offs. Biol Rev 93: 1269–1303. [CrossRef] [Google Scholar]
- Pełechata A, Pełechaty M. 2010. The in situ influence of Ceratophyllum demersum on a phytoplankton assemblage. Oceanol Hydrobiol St 39: 95–101. [CrossRef] [Google Scholar]
- Perreault F, Matias MS, Melegari SP, et al. 2011. Investigation of animal and algal bioassays for reliable saxitoxin ecotoxicity and cytotoxicity risk evaluation. Ecotoxicol Environ Saf 74: 1021–1026. [CrossRef] [PubMed] [Google Scholar]
- Pham T, Utsumi M. 2018. An overview of the accumulation of microcystins in aquatic ecosystems. J Environ Manag 213: 520–529. [CrossRef] [Google Scholar]
- Rippka R, Rippk R, Deruelle J, Waterbury J, Herdman M, Stanier R. 1979. Generic assignments, strain histories and propertiesof pure cultures of cyanobacteria. J Gen Microb 111: 1–61. [Google Scholar]
- Santonja M, Le Rouzic B, Thiébaut G. 2018. Seasonal dependence and functional implications of macrophyte-phytoplankton allelopathic interactions. Freshw Biol 63: 1161–1172. [CrossRef] [Google Scholar]
- Sun YF, Zhang XX, Zhang L, Huang Y, Yang Z, Montagnes D. 2020. UVB radiation suppresses antigrazer morphological defense in Scenedesmus obliquus by inhibiting algal growth and carbohydrate-regulated gene expression. Environ Sci Technol 54: 4495–4503. [CrossRef] [PubMed] [Google Scholar]
- Tukaj Z, Bohdanowicz J. 1995. Diesel-fuel oil indiced morphological changes in Scenedesmus species (Chlorococcales). Algol Stud 77: 83–94. [Google Scholar]
- Van Donk E, Ianora A, Vos M. 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19. [CrossRef] [Google Scholar]
- Van Holthoon FL, van Beek TA, Lürling M, Van Donk E, De Groot A. 2003. Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia 491: 241–254. [CrossRef] [Google Scholar]
- Verschoor AM, Van der Stap I, Helmsing NR, Lürling M. Van Donk, E. 2004. Induced colony formation within the Scenedesmaceae: adaptive responses to infochemicals from two different herbivore taxa. J Phycol 40: 808–814. [CrossRef] [Google Scholar]
- Wan LL, Long YY, Hui J, et al. 2020. Effect of norfloxacin on algae-cladoceran grazer-larval damselfly food chains: algal morphology-mediated trophic cascades. Chemosphere 256: 127–166. [Google Scholar]
- Wang HJ, Xu C, Liu Y, et al. 2021. From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize African megafauna. The Innovation 2: 100092. [CrossRef] [Google Scholar]
- Wang R, Xue QN, Wang JT, et al. 2017. Effects of an allelochemical in Phaeodactylum tricornutum filtrate on Heterosigma akashiwo: morphological, physiological and growth effects. Chemosphere 186: 527–534. [CrossRef] [PubMed] [Google Scholar]
- Wu S, Li XH, Yang L. 2011. Experimental study on the allelopathy of two kind of submerged plants. Bio-informatics and Biomedical Engineering (iCBBE) 5th Int Conf, Wuhan, China. IEEE Xplore, p 1−4, doi: 10.1109/icbbe.2011.5780841414 [Google Scholar]
- Wu ZB, Deng P, Wu XH, Luo S, Gao YN. 2007. Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obiquus. Hydrobiologia 592: 465–474. [CrossRef] [Google Scholar]
- Yang Z, Kong FX, Shi XL, Cao HS. 2006. Differences in response to rotifer Brachionus urceus culture media filtrate betwenn Scenedesmus obliquus and Microcystis aeruginosa. J Freshw Ecol 21: 209–214. [CrossRef] [Google Scholar]
- Yang Z, Kong F X, Shi X L, Xing P, Zhang M. 2007. Effects of Daphnia-associated infochemicals on the morphology, polysaccharides content and PSII-efficiency in Scenedesmus obliquus. Int Rev Hydrobiol 92: 618–625. [CrossRef] [Google Scholar]
- Yang Z, Li JJ. 2007. Effects of Daphnia-associated infochemicals on the morphology and growth of Scenedesmus obliquus and Microcystis aeruginosa. J Freshw Ecol 22: 249–253. [CrossRef] [MathSciNet] [Google Scholar]
- Yang Z, Liu Y, Ge J, Wang W, Chen YF, Montagnes D. 2010. Aggregate formation and polysaccharide content of Chlorella pyrenoidosa Chick (Chlorophyta) in response to simulated nutrient stress. Bioresource Technol 101: 8336–8341. [CrossRef] [Google Scholar]
- Yang Z, Xiang FH, Minter EJA, Lv K, Chen YF, Montagnes DJS. 2011. The interactive effects of microcystin and nitrite on life-history parameters of the cladoceran Daphnia obtusa. J Hazard Materials 190: 113–118. [CrossRef] [Google Scholar]
- Zhao JG, He FF, Chen ZH, Li HJ, Hu JM, Liu FP. 2012. Effect of culture and extract solutions of macrophytes on the growth of three common algae. J Freshw Ecol 27: 367–379. [CrossRef] [Google Scholar]
- Zhu XX, Wang YY, Hou XY, et al. 2019. High temperature promotes the inhibition of Zn2+ on inducible defense of Scenedesmus obliquus. Chemosphere 216: 203–212. [CrossRef] [PubMed] [Google Scholar]
- Zhu XX, Yang JW, Zhang XX, et al. 2017. Low temperature and Daphnia-associated infochemicals promote colony formation of Scenedesmus obliquus and its harvesting. Biotechnol Letters 39: 85–90. [CrossRef] [PubMed] [Google Scholar]
- Zhu XX, Nan HL, Zhang L, Zhu C, Liu JXY, Yang Z. 2014. Does microcystin disrupt the induced effect of Daphnia kairomone on colony formation in Scenedesmus? Biochem Syst Ecol 57: 169–174. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.