Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
Article Number 18
Number of page(s) 10
DOI https://doi.org/10.1051/limn/2020015
Published online 24 July 2020
  • Abdel-Latif HMR, Khashaba AMA. 2017. Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: histopathology, liver functions, and oxidative stress biomarkers. Veterinary World 10: 955–963. [PubMed] [Google Scholar]
  • Agrawal MK, Ghosh SK, Bagchi D, Weckesser J, Erhard M, Bagchi SN. 2006. Occurrence of microcystin–containing toxic water blooms in Central India. J Microbiol Biotechnol 16: 212–218. [Google Scholar]
  • Ahmed S, Giese B, Schulz V, Ahmed SMd. 2017. Effects of toxic Microcystis aeruginosa bloom on liver of nile tilapia (Oreochromis niloticus). Bangladesh J Zool 45: 1–10. [Google Scholar]
  • Albay M, Matthiensen A, Codd GA. 2005. Occurrence of toxic blue-green algae in the Kucukcekmece lagoon (Istanbul, Turkey). Environ Toxicol 20: 277–284. [PubMed] [Google Scholar]
  • Almanza V, Parra O, Bicudo CD, Baeza C, Beltran J, Figueroa R, Urrutia R. 2016. Occurrence of toxic blooms of Microcystis aeruginosa in a central Chilean (36° Lat. S) urban lake. Rev Chilena Historia Natur 89: 8. [Google Scholar]
  • Andersen RA. 2005. Algal Culturing Techniques. New York: Elsevier Academic Press, 578 p. [Google Scholar]
  • Atencio L, Moreno I, Prieto AI, Moyano R, Molina AM, Cameán AM. 2008. Acute effects of microcystins MC-LR and MC-RR on acid and alkaline phosphatase activities and pathological changes in intraperitoneally exposed tilapia fish (Oreochromis sp.). Toxicol Pathol 36: 449–458. [PubMed] [Google Scholar]
  • Baker PD, Fabbro LD. 2002. A guide to the identification of common blue-green algae (Cyanoprokaryotes) in Australian freshwaters, 8–14 p. [Google Scholar]
  • Carmichael WW. 1992. Cyanobacterial secondary metabolites-the Cyanotoxins. J Appl Bacteriol 72: 445–459. [Google Scholar]
  • Chaffin JD, Davis TW, Smith DJ, Baer MM, Dick GJ. 2018. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae 73: 84–97. [Google Scholar]
  • Chen J, Xie P, Li L, Xu J. 2009. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicolog Sci 108: 81–89. [Google Scholar]
  • Chia MA, Jankowiak JG, Kramer BJ, Goleski JA, Huang IS, Zimba PV, Gobler CJ. 2018. Succession and toxicity of Microcystis and Anabaena (Dolichospermum) blooms are controlled by nutrient-dependent allelopathic interactions. Harmful Algae 74: 67–77. [Google Scholar]
  • Chorus I, Bartram J. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 42–46 p. [Google Scholar]
  • Codd GA, Azevedo SMFO, Bagchi MD, Burch MD, Carmichael WW, Harding WR, Utkilen HC. 2005. CYANONET: a global network for cyanobacterial bloom and toxin risk management: initial situation assessment and recommendations, 21–47 p. [Google Scholar]
  • Davis TW, Berry DL, Boyer GL, Gobler CJ. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725. [Google Scholar]
  • Davis TW, Harke M, Marcoval MA, Goleski JA, Orano-Dawson C, Berry DL, Gobler CJ. 2010. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquatic Microb Ecol 61: 149–162. [Google Scholar]
  • Desikachary TV. 1959. Cyanophyta, Indian Council of Agricultural Research. New Delhi. 81–99 p. [Google Scholar]
  • Dhanya S, Sebastian S, Joseph A. 2012. A survey of algal blooms in the ponds of Pallippuram, Kerala, India. Int J Environ Sci 3: 1185–1193. [Google Scholar]
  • Dziallas C, Grossart HP. 2011. Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS ONE 6. [Google Scholar]
  • Ekman-Ekebom M, Kauppi M, Sivonen K, Niemi M, Lepistö L. 1992. Toxic cyanobacteria in some Finnish lakes. Environ Toxicol Water Quality 7: 201–213. [Google Scholar]
  • Garnier J, Leporcq B, Sanchez N, Philippon X. 1999b. Biogeochemical budgets in three large reservoirs of the seine basin (Marne, Seine and Aube reservoirs). Biogeochemistry 47: 119–146. [Google Scholar]
  • Garnier J, Billen G, Palfner L. 1999a. Understanding the oxygen budget of the Mosel drainage network with the concept of heterotrophic/autotrophic sequences: the River Strahler approach. Hydrobiologia 410: 151–166. [Google Scholar]
  • Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54: 87–97. [Google Scholar]
  • Grasshoff K. 1983. Determination of nitrate. In: Grasshoff K, Ehrhardt M, Kremling K (Eds.). Methods of Seawater Analysis. Weinheim: Verlag Chemie, p. 143. [Google Scholar]
  • Hermansky SJ, Stohs SJ. 1991. Effect of microcystin-LR (MCLR) on hepatic microsomal membrane fluidity. Res Commun Chem Pathol Pharmacol 72: 213–222. [PubMed] [Google Scholar]
  • Huang Y, Chen M. 2013. Variation of dissolved oxygen in the experiments of occurrence & disappearance for Microcystis bloom. Proc Environ Sci 18: 559–566. [Google Scholar]
  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JM, Sommeijer B. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970. [Google Scholar]
  • Imai H, Chang KH, Nakano SI. 2009. Growth responses of harmful algal species Microcystis (Cyanophyceae) under various environmental conditions. Interdisciplinary Stud Environ Chem 269–275. [Google Scholar]
  • Jin XC, Chu ZS, Yi WL, Hu XZ. 2005. Influence of phosphorus on Microcystis growth and the changes of other environmental factors. J Environ Sci 17: 937–941. [Google Scholar]
  • Kim H, Jo BY, Kim BY. 2017. Effect of different concentrations and ratios of ammonium, nitrate, and phosphate on growth of the blue-green algae (cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea. Algae 32: 275–284. [Google Scholar]
  • Knoll LB, Hagenbuch EJ, Stevens MH, Vanni MJ, Renwick WH, Denlinger JC, Hale RS, González MJ. 2015. Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables. Inland Waters 5: 203–214. [Google Scholar]
  • Levy S. 2017. Microcystis rising: why phosphorus reduction isn't enough to stop cyanoHABs. Environ Health Perspect 125: A34–A39. [PubMed] [Google Scholar]
  • Litchman E, de Tezanos Pinto P, Klausmeier CA, Thomas MK, Yoshiyama K, 2010. Linking traits to species diversity and community structure in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old and new paradigms on biodiversity in aquatic ecosystems, 15–28. [Google Scholar]
  • Livingstone DM. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225. [Google Scholar]
  • Lu J, Zhu B, Struewing I, Xu N, Duan S. 2019. Nitrogen–phosphorus-associated metabolic activities during the development of a cyanobacterial bloom revealed by metatranscriptomics. Sci Rep 9: 1–11. [CrossRef] [PubMed] [Google Scholar]
  • Lürling M, Oosterhout FV, Faassen E. 2017. Eutrophication and warming boost cyanobacterial biomass and Microcystins. Toxins 9: 64. [Google Scholar]
  • Metcalf JS, Codd GA. 2014. A review of current knowledge, cyanobacterial toxins (Cyanotoxins) in water. Found Water Res 47. [Google Scholar]
  • Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M, Miller WA, Choutka ST, Dominik C, Hardin D, Langlois G, Murray M, Ward K, Jessup DA. 2010. Evidence for a novel marine harmful algal bloom: cyanotoxin (Microcystin) transfer from land to sea otters. PLoS ONE 5: e12576. [PubMed] [Google Scholar]
  • Muthukumar C, Muralitharan G, Vijayakumar R, Panneerselvam A, Thajuddin N, 2007. Cyanobacterial biodiversity from different freshwater ponds of Thanjavur, Tamilnadu (India), 17–25 p. [Google Scholar]
  • O'Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334. [Google Scholar]
  • Padmakumar KB, Sanilkumar MG, Saramma AV, Sajeevan VN, Menon NR. 2008. Microcystis aeruginosa bloom on Southwest coast of India. Harmful Algae News 37: 11–12. [Google Scholar]
  • Paerl HW, Huisman J. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1: 27–37. [CrossRef] [PubMed] [Google Scholar]
  • Parsons TR, Maita Y, Lalli CM. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 173 p. [Google Scholar]
  • Prakash S, Lawton LA, Edwards C. 2009. Stability of toxigenic Microcystis blooms. Harmful Algae 8: 377–384. [Google Scholar]
  • Prasath B, Nandakumar R, Jayalakshmi T, Santhanam P. 2014. First report on the intense cyanobacteria Microcystis aeruginosa Kützing, 1846 bloom at Muttukkadu Backwater, Southeast coast of India. Indian J Geo-Mar Sci 43: 258–262. [Google Scholar]
  • Preeti T, Hariharan G, Rajarajeswari GR. 2016. Histopathological and biochemical effects of cyanobacterial cells containing microcystin-LR on Tilapia fish. Water Environ J 30: 135–142. [Google Scholar]
  • Reynolds CS. 2006. Ecology of phytoplankton. Cambridge University Press, 145–236 p. [Google Scholar]
  • Reynolds CS, Walsby AE. 1975. Water-blooms. Biol Rev Cambr Philos Soc 50: 437–481. [Google Scholar]
  • Rosen BH, St. Amand A. 2015. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native Communities: U.S. Geological Survey Open-File Report 2015–1164, 26–28 p. [Google Scholar]
  • Sanad SM, Al-Gamaal MA, Hemmaid DK. 2015. Histopathological changes in the liver of the Nile fish Oreochromis niloticus fed on the blue-green algae Microcystis aeruginosa under laboratory conditions. In International Conference on Biological, Civil and Environmental Engineering (BCEE-2015), Bali (Indonesia). [Google Scholar]
  • Sangolkar LN, Maske SS, Chakrabarti T. 2006. Methods for determining Microcystins (peptide hepatotoxins) and microcystins producing cyanobacteria. Water Res 40: 3485. [PubMed] [Google Scholar]
  • Santhosh Kumar C, Ashok Prabu V, Sampathkumar P, Anantharaman P. 2010. Occurrence of algal bloom Microcystis aeruginosa in the Vellar estuary, South-East coast of India. Int J Curr Res 5: 52–55. [Google Scholar]
  • Shestakov SV, Karbysheva EA. 2017. The origin and evolution of cyanobacteria. Biol Bull Rev 7: 259. [Google Scholar]
  • Sivonen K, Himberg K, Luukkainen R, Niemelä SI, Poon GK, Codd GA. 1989. Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxic Assess 4: 339–352. [Google Scholar]
  • Somek H, Ustaoğl MR, Yağci M. 2008. A case report: algal bloom of Microcystis aeruginosa in a drinking-water body, Eğirdir Lake, Turkey. Turk J Fish Aquat Sci 8: 177–179. [Google Scholar]
  • Tanabe Y, Hodoki Y, Sano T, Tada K, Watanabe MM. 2018. Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to brackish water is driven by recent horizontal transfer of sucrose genes. Front Microbiol https://doi.org/10.3389/fmicb.2018.01150. [Google Scholar]
  • Tencalla FG, Dietrich DR, Schlatter C. 1994. Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 30: 215–224. [Google Scholar]
  • Van der Westhuizen AJ, Eloff JN. 1985. Effect of temperature and light on the toxicity and growth of the blue-green algae Microcystis aeruginosa (UV-006). Planta 163: 55–59. [PubMed] [Google Scholar]
  • Whitton BA. 1992. Diversity, ecology, and taxonomy of the cyanobacteria. In: Mann NH, Carr NG (eds) Photosynthetic Prokaryotes. Biotechnology Handbooks 6, 1–51. [Google Scholar]
  • Winkler LW. 1888. Die Bestimmung des im Wassergelosten Sauerstoffes. Chem Ber 21: 2843–2855. [Google Scholar]
  • Yang J, Tang H, Zhang X, Zhu X, Huang Y, Yang Z. 2018. High temperature and pH favor Microcystis aeruginosa to outcompete Scenedesmus obliquus . Environ Sci Pollut Res 25: 4794–4802. [Google Scholar]
  • Yu T, Xie P, Dai M, Liang G. 2009. Determinations of MC-LR and [Dha (7)] MC-LR concentrations and physicochemical properties by liquid chromatography-tandem mass spectrometry. Bull Environ Contamin Toxicol 83: 757–760. [Google Scholar]
  • Yuan LL, Pollard AI, Pather S, Oliver JL, D'Anglada L. 2014. Managing microcystin: identifying national-scale thresholds for total nitrogen and chlorophylla. Freshw Biol 59: 1970–1981. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.