Free Access
Issue |
Ann. Limnol. - Int. J. Lim.
Volume 56, 2020
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/limn/2020021 | |
Published online | 18 September 2020 |
- Aebi H. 1984. Catalase in Vitro. Methods Enzymol 105: 121–126. [CrossRef] [PubMed] [Google Scholar]
- Ahmed NU, Park JI, Jung HJ, Hur Y, Nou IS. 2015. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa . Funct Integr Genomics 15: 383–394. [CrossRef] [PubMed] [Google Scholar]
- Asaeda T, Senavirathna MDHJ, Xia LP, Barnuevo A. 2018. Application of hydrogen peroxide as an environmental stress indicator for vegetation management. Engineering 4: 610–616. [CrossRef] [Google Scholar]
- Bamber JL, Oppenheimer M, Kopp RE, Aspinall WP, Cooke RM. 2019. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc Natl Acad Sci 116: 11195–11200. [CrossRef] [Google Scholar]
- Barko J, Adams M, Clesceri N, 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J Aquat Plant Manag 24: 1–10. [Google Scholar]
- Bhuiyan MJAN, Dutta D. 2012. Assessing impacts of sea level rise on river salinity in the Gorai river network, Bangladesh. Estuar Coast Shelf Sci 96: 219–227. [Google Scholar]
- Borgnis E, Boyer KE. 2016. Salinity tolerance and competition drive distributions of native and invasive submerged aquatic vegetation in the upper San Francisco estuary. Estuar Coasts 39: 707–717. [CrossRef] [Google Scholar]
- Candan N, Tarhan L. 2003. Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41: 35–40. [Google Scholar]
- Cañedo-Argüelles M, Kefford B, Schäfer R. 2019. Salt in freshwaters: causes, effects and prospects − Introduction to the theme issue. Philos Trans R Soc B Biol Sci 374: 20180002. [CrossRef] [Google Scholar]
- Cao Y, Zhi Y, Jeppesen E, Li W. 2019. Species-specific responses of submerged macrophytes to simulated extreme precipitation: a mesocosm study. Water 11: 1160. [Google Scholar]
- Chiogna G, Skrobanek P, Narany TS, Ludwig R, Stumpp C. 2018. Effects of the 2017 drought on isotopic and geochemical gradients in the Adige catchment, Italy. Sci Total Environ 645: 924–936. [PubMed] [Google Scholar]
- Eryılmaz F. 2006. The relationships between salt stress and anthocyanin content in higher plants. Biotechnol Equip 20: 47–52. [CrossRef] [Google Scholar]
- Feldmann T, Nõges P. 2007. Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. Aquat Bot 87: 15–21. [Google Scholar]
- Franklin P, Dunbar M, Whitehead P. 2008. Flow controls on lowland river macrophytes: a review. Sci Total Environ 400: 1–3. [Google Scholar]
- Germ M, Mazej Z, Gaberščik A, Sedej TT. 2006. The response of Ceratophyllum demersum L. and Myriophyllum spicatum L. to reduced, ambient, and enhanced ultraviolet-B radiation. Hydrobiologia 570: 47–51. [Google Scholar]
- Hishida M, Ascencio-Valle F, Fujiyama H, Orduño-Cruz A, Endo T, Larrinaga-Mayoral JÁ. 2014. Antioxidant enzyme responses to salinity stress of Jatropha curcas and J. cinerea at seedling stage. Russ J Plant Physiol 61: 53–62. [Google Scholar]
- Hrivnák R, Oťaheľová H, Valachovic M. 2009. Macrophyte distribution and ecological status of the Turiec River (Slovakia): changes after seven years. Arch Biol Sci 61: 297–306. [CrossRef] [Google Scholar]
- Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT. 2005. Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci 102: 13517–13520. [CrossRef] [Google Scholar]
- Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M. 2007. Comparison of the adsorption capabilities of Myriophylum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci 7: 192–196. [Google Scholar]
- Li F, Xie Y, Chen X, Pan Y, Deng Z, Li X. 2011. Plant distribution can be reflected by physiological responses to salinity of three submerged macrophytes from the Modern Yellow River Delta. Fundam Appl Limnol 179: 159–167. [CrossRef] [Google Scholar]
- Liang J, He J. 2018. Protective role of anthocyanins in plants under low nitrogen stress. Biochem Biophys Res Commun 498: 946–953. [Google Scholar]
- Lind L, Schuler MS, Hintz WD, Stoler AB, Jones DK, Mattes BM, Relyea RA. 2018. Salty fertile lakes: how salinization and eutrophication alter the structure of freshwater communities. Ecosphere 9: e02383. [Google Scholar]
- Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. 2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review . Front Chem 6: 52. [PubMed] [Google Scholar]
- MacAdam JW, Nelson CJ, Sharp RE. 1992. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol 99: 872–878. [Google Scholar]
- Mechora Š, Cuderman P, Stibilj V, Germ M. 2011. Distribution of Se and its species in Myriophyllum spicatum and Ceratophyllum demersum growing in water containing se (VI). Chemosphere 84: 1636–1641. [PubMed] [Google Scholar]
- Mulamba T, Bacopoulos P, Kubatko EJ, Pinto GF. 2019. Sea-level rise impacts on longitudinal salinity for a low-gradient estuarine system. Clim Change 152: 533–550. [Google Scholar]
- Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22: 867–880. [Google Scholar]
- Nakata M, Ohme-Takagi M. 2014. Quantification of Anthocyanin Content. Bio-Protocol 4: e1098. [Google Scholar]
- Nielsen DL, Brock MA, Rees GN, Baldwin DS. 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51: 655–665. [CrossRef] [Google Scholar]
- Pietrini F, Iannelli MA, Massacci A. 2002. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell Environ 25: 1254–1259. [Google Scholar]
- Rameshkumar S, Radhakrishnan K, Aanand S, Rajaram R. 2019. Influence of physicochemical water quality on aquatic macrophyte diversity in seasonal wetlands. Appl Water Sci 9: 12. [Google Scholar]
- Rice KC, Hong B, Shen J. 2014. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA. J Environ Manag 111: 61–69. [CrossRef] [Google Scholar]
- Rout NP, Shaw BP. 2001. Salt tolerance in aquatic macrophytes: Ionic relation and interaction. Biol Plant 44: 95–99. [CrossRef] [Google Scholar]
- Satterfield CN, Bonnell AH. 1955. Interferences in the titanium sulfate method for hydrogen peroxide. Anal Chem 27: 1174–1175. [Google Scholar]
- Schallenberg M, Hall CJ, Burns CW. 2003. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar Ecol Prog Ser 251: 181–189. [Google Scholar]
- Søndergaard M, Johansson LS, Lauridsen TL, Jørgensen TB, Liboriussen L, Jeppesen E. 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshw Biol 55: 893–908. [Google Scholar]
- Srivastava AK, Srivastava S, Lokhande VH, D'Souza SF, Suprasanna P. 2015. Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front Environ Sci 3: 19. [Google Scholar]
- Terpstra W, Lambers JWJ. 1983. Interactions between cholorophyllase, chlorophyll a, plant lipids and Mg2+ . Biochim Biophys Acta (BBA)/Protein Struct Mol 746: 23–31. [Google Scholar]
- Thouvenot L, Haury J, Thiébaut G. 2012. Responses of two invasive macrophyte species to salt. Hydrobiologia 686: 213–223. [Google Scholar]
- Thouvenot L, Thiébaut G. 2018. Regeneration and colonization abilities of the invasive species Elodea canadensis and Elodea nuttallii under a salt gradient: implications for freshwater invasibility. Hydrobiologia 817: 193–203. [Google Scholar]
- Twilley RR, Barko JW. 1990. The growth of submersed macrophytes under experimental salinity and light conditions. Estuaries 13: 311–321. [CrossRef] [Google Scholar]
- Vu DT, Yamada T, Ishidaira H. 2018. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci Technol 77: 1632–1639. [CrossRef] [PubMed] [Google Scholar]
- Warwick NWM, Bailey PCE. 1997. The effect of increasing salinity on the growth and ion content of three non-halophytic wetland macrophytes. Aquat Bot 58: 73–88. [Google Scholar]
- Wellburn AR. 1994. The spectral determination of Chlorophylls a and b, as well as total Carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144: 307–313. [Google Scholar]
- Xu Z, Rothstein SJ. 2018. ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signal Behav 13: e1451708. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.