Free Access
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 15
Number of page(s) 7
Published online 09 August 2019
  • Antonovics J, Levin DA. 1980. The ecological and genetic consequences of density-dependent regulation in plants. Annu Rev Ecol Syst 11: 411–452. [CrossRef] [Google Scholar]
  • Antunes JT, Leao PN, Vasconcelos VM. 2012. Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043. Microb Ecol 64: 584–592. [CrossRef] [PubMed] [Google Scholar]
  • Barreiro A, Hairston NG. 2013. The influence of resource limitation on the allelopathic effect of Chlamydomonas reinhardtii on other unicellular freshwater planktonic organisms. J Plankton Res 35: 1339–1344. [CrossRef] [Google Scholar]
  • Chang X, Eigemann F, Hilt S. 2012. Do macrophytes support harmful cyanobacteria? Interactions with a green alga reverse the inhibiting effects of macrophyte allelochemicals on Microcystis aeruginosa . Harmful Algae 19: 76–84. [CrossRef] [Google Scholar]
  • Chen DH. 1999. Studies on interspecies competition andbiological process of formation of cyanobacterial blooms. PhD thesis, Institute of Hydrobiologia, Chinese Academic of Sciences, Wuhan [Google Scholar]
  • Donadi S, Austin AN, Svartgren E, Eriksson BK, Hansen JP, Eklöf JS. 2019. Density-dependent positive feedbacks buffer aquatic plants from interactive effects of eutrophication and predator loss. Ecology 99: 2515–2524. [CrossRef] [Google Scholar]
  • Dong J, Gao YN, Chang MY, Ma HH, Han K, Tao X, Li Y. 2018. Colony formation by the green alga Chlorella vulgaris in response to the competitor Ceratophyllum demersum . Hydrobiologia 805: 177–187. [CrossRef] [Google Scholar]
  • Dong J, Lu JJ, Li GB, Song LR. 2013. Influences of a submerged macrophyte on colony formation and growth of a green alga. Aquat Biol 19: 265–274. [CrossRef] [Google Scholar]
  • Eigemann F, Vanormelingen P, Hilt S. 2013. Sensitivity of the green alga Pediastrum duplex Meyen to allelochemicals is strainspecific and not related to co-occurrence with allelopathic macrophytes. PLoS One 8: e78463. [CrossRef] [PubMed] [Google Scholar]
  • Fisher RM, Bel T, West SA. 2016. Multicellular group formation in response to predators in the algae Chlorella vulgaris . J Evol Biol 29: 551–559. [CrossRef] [Google Scholar]
  • Fleming JP, Dibble ED. 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 23–37. [CrossRef] [Google Scholar]
  • Gao YN, Ge FJ, Zhang LP, He Y, Lu ZY, Zhang YY, Liu BY, Zhou QH, Wu ZB. 2017. Enhanced toxicity to the cyanobacterium Microcystis aeruginosa by low-dosage repeated exposure to the allelochemical N-phenyl-1-naphthylamine. Chemosphere 174: 732–738. [CrossRef] [PubMed] [Google Scholar]
  • Gao YN, Liu BY, Ge FJ, Xu D, Zhang LP, Wu ZB. 2011. Isolation and identification of allelopathic fatty acids exuded from three submerged hydrocharitaceae species. Acta Hydrobiol Sinica 35: 170–174. (in Chinese) [CrossRef] [Google Scholar]
  • Graneli E, Salomon PS. 2010. Factors influencing allelopathy and toxicity in Prymnesium parvum . J Am Water Resour Assoc 46: 108–120 [CrossRef] [Google Scholar]
  • Gross EM. 2003. Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22: 313–339. [CrossRef] [Google Scholar]
  • Hilt S, Gross EM. 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl Ecol : 422–432. [CrossRef] [Google Scholar]
  • Hong Y, Hu HY, Li FM. 2008. Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetoacetate (EMA) under different initial algal densities. Pestic Biochem Phys 90: 203–212. [CrossRef] [Google Scholar]
  • Jiang H, Zhao DH, Zhao H, Cai Y, Xu DL, Zhou CF, Leng X, Xie D. 2015. Density-dependent interactions between Hydrilla verticillata (L.F.) Royle and phytoplankton: a mesocosm experiment. Clean – Soil, Air, Water 43: 1623–1632. [CrossRef] [Google Scholar]
  • Kim DK, Javed A, Yang C, Arhonditsis GB. 2018. Development of a mechanistic eutrophication model for wetland management: sensitivity analysis of the interplay among phytoplankton, macrophytes, and sediment nutrient release. Ecol Inform 48: 198–214. [CrossRef] [Google Scholar]
  • Körner S, Nicklisch A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38: 862–871 [CrossRef] [Google Scholar]
  • Krause-Jensen D, Sagert S, Schubert H, Boström C. 2008. Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecol Indic 8: 515–529. [CrossRef] [Google Scholar]
  • Leflaive J, Ten-Hage L. 2009. Allelopathic interactions in benthic biofilms: effects of abiotic conditions on production of and sensitivity to allelochemicals. J N Am Benthol Soc 28: 271–280. [CrossRef] [Google Scholar]
  • Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Wrolstad R.E., Acree T.E., An H., Decker E.A., Penner M.H., Reid D.S., Schwartz S.J., Shoemaker C.F., Sporns P. (eds.), Current Protocols in Food Analytical Chemistry. Wiley, London, F4.3.1–F4.3.8. [CrossRef] [Google Scholar]
  • Lürling M, Van Geest G, Scheffer M. 2006. Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia 556: 209–220. [CrossRef] [Google Scholar]
  • Mulderij G, Mau B, van Donk E, Gross EM. 2007. Allelopathic activity of Stratiotes aloides on phytoplankton − towards identification of allelopathic substances. Hydrobiologia 584: 89–100. [CrossRef] [Google Scholar]
  • Narwal SS. 2006. Allelopathy in ecological sustainable agriculture. In: Reigosa MJ, Pedrol N, Gonzalez L. (Eds.). Allelopathy: a physiological process with ecological implications. Springer, The Netherlands, p. 548. [Google Scholar]
  • Öterler B. 2017. Community structure, temporal and spatial changes of epiphytic algae on three different submerged macrophytes in a shallow lake. Pol J Environ Stud 26: 2147–2158. [CrossRef] [Google Scholar]
  • Rippka R, Rippk R, Deruelle J, Waterbury J, Herdman M, Stanier R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61. [Google Scholar]
  • Santonja M, Le Rouzic B, Thiébaut G. 2018. Seasonal dependence and functional implications of macrophyte-phytoplankton allelopathic interactions. Freshw Biol 63: 1161–1172. [CrossRef] [Google Scholar]
  • Van Donk E, Ianora A, Vos M. 2011. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668: 3–19. [CrossRef] [Google Scholar]
  • Wang L, He F, Sun J, Hu Y, Huang T, Zhang Y, Wu ZB. 2017. Effects of three biological control approaches and their combination on the restoration of eutrophicated water bodies. Limnology 18: 301–313. [CrossRef] [Google Scholar]
  • Wang Q, Xia L, Xu X, Fu J, An SQ, Wang BZ. 2015. Changes of phytoplankton and water quality under the regulation of filter-feeding fishes and submerged aquatic plants in a large-scale experiment. Clean − Soil, Air, Water 43: 1598–1608. [CrossRef] [Google Scholar]
  • Wu ZB, Deng P, Wu XH, Luo S, Gao YN. 2007. Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obiquus. Hydrobiologia 592: 465–474 [CrossRef] [Google Scholar]
  • Wu S, Li XH, Yang L. 2011. Experimental study on the allelopathy of two kind of submerged plants. Bioinformatics and Biomedical Engineering (iCBBE) 5th Int Conf, Wuhan, China. IEEE Xplore , p 1–4, doi: 10.1109/icbbe.2011.5780841 [Google Scholar]
  • Yasumoto K, Nishigami A, Aoi H, Tsuchihashi C, Kasai F, Kusumi T, Ooi T. 2008. Isolation of new aliphatic sulfates and sulfamate as the Daphnia kairomones inducing morphological change of a phytoplankton Scenedesmus gutwinskii . Chem Pharm Bull 56: 133–136. [CrossRef] [Google Scholar]
  • Yasumoto K, Nishigami A, Yasumoto M, Kasai F, Okada Y, Kusumi T, Ooi T. 2005. Aliphatic sulfates released from Daphnia induce morphological defense of phytoplankton: isolation and synthesis of kairomones. Tetrahedron Lett 46: 4765–4767. [CrossRef] [Google Scholar]
  • Zeng L, He F, Zhang Y, Liu BY, Dai ZG, Zhou QH, Wu ZB. 2017. How submerged macrophyte restoration promotes a shift of phytoplankton community in a shallow subtropical lake. Pol J Environ Stud 26: 1363–1373. [CrossRef] [Google Scholar]
  • Zhao JG, He FF, Chen ZH, Li HJ, Hu JM, Liu FP. 2012. Effect of culture and extract solutions of macrophytes on the growth of three common algae. J Freshw Ecol 27: 367–379. [CrossRef] [Google Scholar]
  • Zheng GL, Xu RB, Chang XX, Hilt S, Wu C. 2013. Cyanobacteria can allelopathically inhibit submerged macrophytes: effects of Microcystis aeruginosa extracts and exudates on Potamogeton malaianus . Aquat Bot 109: 1–7. [CrossRef] [Google Scholar]
  • Zhu XX, Wang J, Chen QW, Chen G, Huang Y, Yang Z. 2016. Costs and trade-offs of grazer induced defenses in Scenedesmus under deficient resource. Scientific Reports 6: 22594. [CrossRef] [PubMed] [Google Scholar]
  • Zuo SP, Fang ZS, Yang SY, Wan K, Han YJ. 2015. Effect of allelopathic potential from selected aquatic macrophytes on algal interaction in the polluted water. Biochem Syst Ecol 61: 133–138. [CrossRef] [Google Scholar]
  • Zuo SP, Zhou SB, Ye LT, Ding Y, Jiang XF. 2016. Antialgal effects of five individual allelochemicals and their mixtures in low level pollution conditions. Environ Sci Poll Res 23: 15703–15711. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.