Open Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 12
Number of page(s) 7
DOI https://doi.org/10.1051/limn/2019011
Published online 24 May 2019
  • Bi XD, Zhang SL, Dai W, et al. 2013. Effects of lead (II) on the extracellular polysaccharide (EPS) production and colony formation of cultured Microcystis aeruginosa . Water Sci Technol 67(4): 803–809. [CrossRef] [PubMed] [Google Scholar]
  • Burkert PH, Drakare S, Blomqvist P. 2001. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa . Aquat Ecol 35: 11–17. [Google Scholar]
  • Camacho FG, Rodríguez JJG, Mirón AS, et al. 2007. Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks: Implications in bioprocess engineering. Process Biochem 42(11): 1506–1515. [Google Scholar]
  • Cao HS, Yang Z. 2010. Variation in colony size of Microcystis aeruginosa in a eutrophic lake during recruitment and bloom formation. J Freshw Ecol 25(3): 331–335. [CrossRef] [Google Scholar]
  • Duan ZP, Tan X, Parajuli K, et al. 2018. Colony formation in two Microcystis morphotypes: Effects of temperature and nutrient availability. Harmful Algae 72: 14–24. [PubMed] [Google Scholar]
  • Gan N, Xiao Y, Zhu L, et al. 2012. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14(3): 730–742. [CrossRef] [PubMed] [Google Scholar]
  • Harke MJ, Steffen MM, Gobler CJ, et al. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20. [CrossRef] [PubMed] [Google Scholar]
  • Herbert D, Phipps PJ, Strange RE. 1971. Chemical analysis of microbial cells. London, UK: Academic Press, 209 p. [Google Scholar]
  • Jiang LY, Jiang C, Zhou W, He YL. 2012. Growth of Microcystis aeruginosa under different disturbance. Environ Chem 31(2): 216–220 (in Chinese). [Google Scholar]
  • Kessel M, Eloff JN. 1975. The ultrastructure and development of the colonial sheath of Microcystis marginata . Arch Microbiol 106: 209–214. [CrossRef] [PubMed] [Google Scholar]
  • Kirk JTOA. 1975. Theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. Spherical cells. New Phytol 75: 21–36. [Google Scholar]
  • Lai G, Wang P, Huang X, et al. 2015. A simulation research of impacts of the Lake Poyang hydraulic project on hydrology and hydrodynamics. J Lake Sci 27(1): 128–140. [CrossRef] [Google Scholar]
  • Lazier JRN, Mann KH. 1989. Turbulence and the diffusive layers around small organisms. Deep-Sea Res 36: 1721–1733. [CrossRef] [Google Scholar]
  • Li F, Hu H, Chong Y, et al. 2007. Influence of EMA isolated from Phragmites communis on physiological characters of Microcystis aeruginosa . China Environ Sci 27(3): 377–381. [Google Scholar]
  • Li M, Zhu W, Gao L, Lu L. 2013. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25(4): 1023–1030. [Google Scholar]
  • Li M, Xiao M, Zhang P, Hamilton DP. 2018. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Res 141: 340–348. [CrossRef] [PubMed] [Google Scholar]
  • O'Brien KR, Meyer DL, Waite AW, et al. 2004. Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: Laboratory experiments in a grid-stirred tank. Hydrobiologia 519: 143–152. [Google Scholar]
  • Oliver RL, Ganf GG. 2000. Freshwater blooms. Dordrecht: Kluwer Academic Publishers, pp. 149–194. [Google Scholar]
  • Qin BQ. 2008. Lake Taihu, China-dynamics and environmental change. Berlin: Springer Press. [Google Scholar]
  • Qin BQ, Yang GJ, Ma JR, et al. 2018. Spatiotemporal changes of cyanobacterial bloom in large shallow eutrophic Lake Taihu, China. Front Microbiol 9: 451. [CrossRef] [PubMed] [Google Scholar]
  • Regel RH, Brookes JD, Ganf GG, Griffiths RW. 2004. The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain. Hydrobiologia 517: 107–120. [Google Scholar]
  • Reynolds CS. 2006. The ecology of phytoplankton. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61. [Google Scholar]
  • Robarts RD, Zohary T. 1984. Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeesport Dam, South Africa). J Ecol 72: 1001–1017. [Google Scholar]
  • Rodríguez JJG, Mirón AS, Camacho FG, et al. 2009. Causes of shear sensitivity of the toxic dinoflagellate. Protoceratium reticulatum. Biotechnol Progr 25(3): 792–800. [CrossRef] [Google Scholar]
  • Sabart M, Misson B, Descroix A, et al. 2013. The importance of small colonies in sustaining Microcystis population exposed to mixing conditions: An exploration through colony size, genotypic composition and toxic potential. Environ Microbiol Rep 5(5): 747–756. [PubMed] [Google Scholar]
  • Sedmak B, Eleršek T. 2006. Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 51: 508–515. [CrossRef] [PubMed] [Google Scholar]
  • Shen H, Song L. 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom forming Microcystis . Hydrobiologyia 592(1): 475–486. [CrossRef] [Google Scholar]
  • Sommaruga R, Chen YW, Liu ZW. 2009. Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microb Ecol 57: 667–674. [CrossRef] [PubMed] [Google Scholar]
  • Wang YW, Zhao J, Li JH, et al. 2011. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa . Curr Microbiol 62(2): 679–683. [CrossRef] [PubMed] [Google Scholar]
  • Wang Y, Wang L, Hua Z, et al. 2016a. The relationships of velocity, dissolved oxygen with Fe2+, S2− in black bloom region on Nanfei River estuary of Lake Chaohu. J Lake Sci 28(4): 710–717. [CrossRef] [Google Scholar]
  • Wang WJ, Shen H, Shi PL, Chen J, Ni LY, Xie P. 2016b. Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. J Appl Phycol 28: 1111–1123. [Google Scholar]
  • Wang YB, Yang GJ, Qin BQ, et al. 2016c. Effect of typhoon on the size of Microcystis colonies in Lake Taihu. Chin J Environ Eng 10(7): 3961–3966 (in Chinese). [Google Scholar]
  • Wu XD, Kong FX. 2009. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94(3): 258–266. [Google Scholar]
  • Wu T, Wang Z, Niu C, et al. 2015. The effect of intense hydrodynamic disturbance on chromophoric dissolved organic matter in a shallow eutrophic lake. J Freshw Ecol 30(1): 143–156. [CrossRef] [Google Scholar]
  • Xiao Y. 2011. Responses and underlying mechanism of colonial Microcystis to light intensity and microcystins [D]. Thesis for Doctor of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan (in Chinese). [Google Scholar]
  • Xiao Y, Gan NQ, Liu J, Zheng LL, Song LR. 2012. Heterogeneity of buoyancy in response to light between two buoyant types of cyanobacterium Microcystis . Hydrobiologia 679: 297–311. [Google Scholar]
  • Xiao Y, Li Z, Li C, Zhang Z, Guo J. 2016. Effect of small-scale turbulence on the physiology and morphology of two bloom-forming cyanobacteria. PloS ONE 11(12): e0168925. [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto Y, Shiah FK., Chen YL. 2011. Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Ann Limnol Int J Limnol 47: 167–173. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yan RR, Pang Y, Chen XF, Zhao W, Ma J. 2008. Effect of disturbance on growth of Microcystis aeruginosa in different nutrient levels. Environ Sci 29(10): 2749–2753 (in Chinese). [Google Scholar]
  • Yang Z, Kong F, Shi X, Zhang M, Xing P, Cao H. 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J Phycol 44(3): 716–720. [CrossRef] [PubMed] [Google Scholar]
  • Yang GJ, Qin BQ, Gao G, et al. 2009. Effect of Ceriodaphnia cornuta in colony formation of Microcystis in Lake Taihu. J Lake Sci 21(4): 495–501 (in Chinese). [CrossRef] [Google Scholar]
  • Yang GJ, Zhong CN, Qin BQ, et al. 2017. Effect of in situ simulative mixing on colony size of Microcystis in Lake Taihu. J Lake Sci 29(2): 363–368 (in Chinese). [CrossRef] [Google Scholar]
  • Zhu W, Li M, Luo Y, et al. 2014. Vertical distribution of Microcystis colony size in Lake Taihu: Its role in algal blooms. J Great Lakes Res 40(4): 949–955. [Google Scholar]
  • Zhu W, Zhou X, Chen H, Gao L, Xiao M, Li M. 2016. High nutrient concentration and temperature alleviated formation of large colonies of Microcystis: Evidence from field investigations and laboratory experiments. Water Res 101: 167–175. [CrossRef] [PubMed] [Google Scholar]
  • Zhou J, Han XX, Qin BQ, Céline C, Yang GJ. 2016. Response of zooplankton community to turbulence in large, shallow Lake Taihu: A mesocosm experiment. Fund Appl Limnol 187(4): 315–324. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.