Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 9
Number of page(s) 12
DOI https://doi.org/10.1051/limn/2019009
Published online 13 May 2019
  • Abonyi A, Leitão M, Lançon AM, Padisák J. 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698: 233–249. [CrossRef] [Google Scholar]
  • Aizaki M, Otsuki A, Fukishim T, Kawai T, Hosomi M, Muraoka K. 1981. Application of modified Carlson's trophic status index to Japanese lakes and its relationships to other parameters related to trophic status (in Japanese with English summary). Res Rep Natl Inst Environ Stud Jpn 23: 13–31. [Google Scholar]
  • Becker V, Caputo L, Ordóñez J, Marcé R, Armengol J, Crossetti LO, Huszar VL. 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44: 3345–3354. [CrossRef] [PubMed] [Google Scholar]
  • Bekteshi A. 2015. Use of trophic status index (Carlson, 1977) for assessment of trophic status of the Shkodra Lake. J Environ Prot Ecol 15: 359–365. [Google Scholar]
  • Berry MA, Davis TW, Cory RM, Duhaime MB, Johengen TH, Kling GW, Marino JA, Den Uyl PA, Gossiaux D, Dick GJ, Denef VJ. 2016. Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. Environ Microbiol 19: 1149–1162. [CrossRef] [Google Scholar]
  • Bonnet MP, Poulin M. 2002. Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa, dominance. Ecol Model 156: 93–112. [CrossRef] [Google Scholar]
  • Borics G, Tóthmérész B, Lukács BA, Várbíró G. 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262. [CrossRef] [Google Scholar]
  • Callisto M, Hughes RM, Lopes JM, Castro MA (eds.). 2014. Ecological Conditions in Hydropower Basins, Peixe Vivo Series 2. Belo Horizonte, Brazil: Companhia Energética de Minas Gerais. [Google Scholar]
  • Canfield, Jr. DEC, Langeland KA, Maceina MJ, Haller WT, Shireman JV, Jones J. 1983. Trophic status classification of lakes with aquatic macrophytes. Can J Fish Aquat Sci 40: 1713–1718. [CrossRef] [Google Scholar]
  • Carlson RE. 1977. A trophic status index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • Çelekli A, Öztürk B. 2014. Determination of ecological status and ecological preferences of phytoplankton using multivariate approach in a Mediterranean reservoir. Hydrobiologia 740: 115–135. [CrossRef] [Google Scholar]
  • Cellamare M, Morin S, Coste M, Haury J. 2012. Ecological assessment of French Atlantic lakes based on phytoplankton, phytobenthos and macrophytes. Environ Monit Assess 184: 4685–4708. [Google Scholar]
  • Crossetti LO, Bicudo CEDM. 2008. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610: 161–173. [CrossRef] [Google Scholar]
  • Crossetti LO, Stenger-Kovács C, Padisák J. 2013. Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia 716: 87–101. [CrossRef] [Google Scholar]
  • Éva H, Padisák J. 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237. [CrossRef] [Google Scholar]
  • Fonseca BM, Bicudo CEDM. 2011 Phytoplankton seasonal and vertical variations in a tropical shallow reservoir with abundant macrophytes (Ninféias Pond, Brazil). Hydrobiologia 665: 229–245. [CrossRef] [Google Scholar]
  • Fontana L, Albuquerque ALS, Brenner M, Bonotto DM, Sabaris TPP, Pires MAF, Cotrim MEB, Bicudo DC. 2014. The eutrophication history of a tropical water supply reservoir in Brazil. J Paleolimnol 51: 29–43. [CrossRef] [Google Scholar]
  • Fourqurean JW, Jones RD, Zieman JC. 1993. Process influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuar Coast Shelf Sci 36: 295–314. [CrossRef] [Google Scholar]
  • Gao Y, Qi SC, Su YX, Ci HX. 2010. Seasonal changes of phyptoplankton diversity and water quality in Yi River and Beng River. Trans Oceanol Limnol 22: 109–113 (in Chinese). [Google Scholar]
  • Graham JM, Kent AD, Lauster GH, Triplett E. 2004. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microb Ecol 48: 528–540. [CrossRef] [PubMed] [Google Scholar]
  • Grover JP, Chrzanowski TH. 2004. Limiting resources, disturbance, and diversity in phytoplankton communities. Ecol Monogr 74: 533–551. [CrossRef] [Google Scholar]
  • Heip C, Engels P. 1974. Comparing species diversity and evenness. J Mar Biol Assoc UK 54: 559–563. [CrossRef] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel U, Pollingher D, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Hu HJ, Wei YX. 2006. The Freshwater Algae of China Systematics, Taxonomy and Ecology. Beijing, China: Science Press (in Chinese). [Google Scholar]
  • Hughes RM, Gammon JR. 1987. Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Trans Am Fish Soc 116: 196–209. [Google Scholar]
  • Hughes RM, Peck DV. 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. J N Am Benth Soc 27: 837–859. [Google Scholar]
  • Kaufmann PR, Hughes RM, Van Sickle J, Whittier TR, Seeliger CW, Paulsen SG. 2014. Lakeshore and littoral habitat structure: a field survey method and its precision. Lake Reserv Manage 30: 157–176. [CrossRef] [Google Scholar]
  • Kitaka N, Harper DM, Mavuti KM. 2002. Phosphorus inputs to Lake Naivasha, Kenya, from its catchment and the trophic status of the lake. Hydrobiologia 488: 73–80. [CrossRef] [Google Scholar]
  • Kolding J, van Zwieten PAM. 2012. Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fish Res 115: 99–109. [CrossRef] [Google Scholar]
  • Kruk C, Segura AM. 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202. [Google Scholar]
  • Latour D, Sabido O, Salençon MJ, Giraudet H. 2004. Dynamics and metabolic activity of the benthic cyanobacterium Microcystis aeruginosa in the Grangent reservoir (France). J Plankton Res 26: 719–726. [CrossRef] [Google Scholar]
  • Launois L, Veslot J, Irz P, Argillier C. 2010. Selecting fish based metrics responding to human pressures in French natural lakes and reservoirs: towards the development of a fish‐based index (FBI) for French lakes. Ecol Freshw Fish 20: 120–132. [CrossRef] [Google Scholar]
  • Leitão M, Léglize L. 2000. Long-term variations of epilimnetic phytoplankton in an artificial reservoir during a 10-year survey. Hydrobiologia 424: 39–49. [CrossRef] [Google Scholar]
  • Lin SJ, He LJ, Huang PS, Han BP. 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Ecol Sci 24: 9–11 (in Chinese). [Google Scholar]
  • Lopes MRM, Bicudo CEDM, Ferragut MC. 2005. Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542: 235–247. [CrossRef] [Google Scholar]
  • Moreno-Ostos E, Cruz-Pizarro L, Basanta A, George DG. 2008. The spatial distribution of different phytoplankton functional groups in a Mediterranean reservoir. Aquat Ecol 42: 115–128. [CrossRef] [Google Scholar]
  • Morris EK, Caruso F, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, 2014 Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4: 3514–3524. [CrossRef] [PubMed] [Google Scholar]
  • Nõges P, Mischke U, Laugaste R, Solimini AG. 2010. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48. [CrossRef] [Google Scholar]
  • Padisák J. 1994. Identification of relevant time-scales in non-equilibrium community dynamics: conclusions from phytoplankton surveys. New Zeal J Ecol 18: 169–176. [Google Scholar]
  • Padisák J, Borics G, Grigorszky I, Soroczki-Pinter E. 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553: 1–14. [CrossRef] [Google Scholar]
  • Padisák J, Crossetti L, Naselli-Flores L. 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [CrossRef] [Google Scholar]
  • Palleyi S, Kar RN, Panda CR. 2011. Influence of water quality on the biodiversity of phytoplankton in Dhamra River Estuary of Odisha Coast, Bay of Bengal. J Appl Sci Environ Manage 15: 69–74. [Google Scholar]
  • Pasztaleniec A, Poniewozik M. 2010. Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive a comparison of approaches. Limnologica 40: 251–259. [CrossRef] [Google Scholar]
  • Pongswat S, Thammathaworn S, Peerapornpisal Y, Thanee N. 2001. Use of phytoplankton biodiversity for monitoring water quality in Rama IX Lake, Pathumthani province, in 5th BRT Annual Conference, Udon Thani, Thailand, 8–11 October 2001. [Google Scholar]
  • Prasad AGD, Siddaraju. 2012. Carlson's Trophic State Index for the assessment of trophic status of two Lakes in Mandya district. Adv Appl Sci Res 3: 2992–2996. [Google Scholar]
  • Pringle CM. 2001. Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl 11: 981–998. [CrossRef] [Google Scholar]
  • Reynolds CS. 2006. Ecology of Phytoplankton. Cambridge, UK: Cambridge University Press. [Google Scholar]
  • Reynolds CS, Descy JP. 1996. The production, biomass and structure of phytoplankton in large rivers. Archives of Hydrobiology, Supplement 113. Large Rivers 10: 161–187. [Google Scholar]
  • Reynolds CS, Huszar VLM, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Sanches BO, Hughes RM, Macedo DR, Callisto M, Santos GB. 2016. Spatial variations in fish assemblage structure in a southeastern Brazilian reservoir. Braz J Biol 76: 185–193. [CrossRef] [Google Scholar]
  • Schaumburg J, Schranz C, Hofmann G, Stelzer D, Schneider SC, Schmedtje U. 2004. Macrophytes and phytobenthos as indicators of ecological status in German lakes-a contribution to the implementation of the Water Framework Directive. Limnologica 34: 302–314. [CrossRef] [Google Scholar]
  • SEPA (State Environmental Protection Administration of China). 2002. Environmental Quality Standards for Surface Water (GB3838-2002). Beijing: China Standards Press (in Chinese). [Google Scholar]
  • Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Sci Pollut Res Int 10: 126–39. [Google Scholar]
  • Sommer U, Padisák J, Reynolds CS, Juhász-Nagy P. 1993. Hutchinson's heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7. [CrossRef] [Google Scholar]
  • Stevenson J. 2014. Ecological assessments with algae: a review and synthesis. J Phycol 50: 437–461. [CrossRef] [PubMed] [Google Scholar]
  • Stevenson RJ, Zalack JT, Wolin J. 2013. A multimetric index of lake diatom condition based on surface-sediment assemblages. Freshw Sci 32: 1005–1025. [CrossRef] [Google Scholar]
  • Stević F, Mihaljević M, Špoljarić D. 2013. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709: 143–158. [CrossRef] [Google Scholar]
  • Stoddard JL, Herlihy AT, Peck DV, Hughes RM, Whittier TR, Tarquinio E. 2008. A process for creating multi-metric indices for large-scale aquatic surveys. J N Am Benthol Soc 27: 878–891. [Google Scholar]
  • Straskraba M, Tundisi JG, Duncan A. 1993. State-of-the-art of reservoir limnology and water quality management. in Straskraba M., Tundisi J.G. and Duncan A. (eds.), Comparative Reservoir Limnology and Water Quality Management. Heidelberg, Germany: Springer, pp. 213–288. [CrossRef] [Google Scholar]
  • Terra BF, Araujo FG. 2011. A preliminary fish assemblage index for a transitional river-reservoir system in southeastern Brazil. Ecol Indic 11: 874–881. [CrossRef] [Google Scholar]
  • Thornton KW. 1990. Perspectives on reservoir limnology. in Thornton K.W., Kimmel B.L. and Payne F.E. (eds.), Reservoir Limnology: Ecological Perspectives. New York: John Wiley and Sons, pp. 1–15. [Google Scholar]
  • USEPA (U.S. Environmental Protection Agency). 2016. National Lakes Sssessment 2012: A Collaborative Survey of Lakes in the United States. EPA 841-R-16-113. Washington, DC: Office of Water/Office of Research and Development. [Google Scholar]
  • Wang L, Cai Q, Xu Y, Kong LH, Tan L, Zhang M. 2011. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquat Ecol 45: 197–212. [CrossRef] [Google Scholar]
  • Wetzel RG. 1990. Reservoir ecosystems: conclusions and speculations. in Thornton K.W., Kimmel B.L. and Payne F.E. (eds.), Reservoir Limnology: Ecological Perspectives. New York: John Wiley and Sons, pp. 227–238. [Google Scholar]
  • Yang XL. 2008. Study on the community characteristics of zooplankton in Zhushuqiao Reservoir and biological evaluation of water quality. M.Sc. thesis, Central South University of Forestry and Technology, Hunan, China. [Google Scholar]
  • Yoshimura T, Kudo I. 2001. Seasonal variations in nutrients and a factor limiting phytoplankton growth in Lake Ohnuma. Jpn J Limnol 62: 205–217. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.