Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 55, 2019
Article Number 4
Number of page(s) 14
DOI https://doi.org/10.1051/limn/2019003
Published online 08 March 2019
  • Andersen FØ, Ring P. 1999. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 408–409: 175–183. [Google Scholar]
  • Boström B, Andersen JM, Fleischer S, Jansson M. 1988. Exchange of phosphorus across the sediment − water interface. Hydrobiologia 170: 229–244. [Google Scholar]
  • Boström B, Jansson M, Forsberg C. 1982. Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergebn Limnol 18: 5–59. [Google Scholar]
  • Cooke GD, Welch EB, Martin AB, Fulmer DG, Hyde JB, Schrieve GD. 1993. Effectiveness of Al, Ca and Fe salts for control of internal phosphorus loading in shallow and deep lakes; Hydrobiologia 253: 323–335. [Google Scholar]
  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water policy. OJ L327/1 from 22.12.2000. [Google Scholar]
  • Dunalska JA, Grochowska J, Wisniewski G, Napiórkowska-Krzebietke A. 2015. Can we restore badly degraded urban lakes? Ecol Eng 82: 432–441. [Google Scholar]
  • Frodge JD, Thomas GL, Pauley GB. 1991. Sediments phosphorus loading beneath dense canopies of aquatic macrophytes. Lake Reserv Manag 7: 61–71. [CrossRef] [Google Scholar]
  • Gołdyn B, Kowalczewska-Madura K, Celewicz-Gołdyn S. 2015. Drought and deluge: influence of environmental factors on water quality of kettle holes in two subsequent years with different precipitation. Limnologica 54: 14–22. [Google Scholar]
  • Gołdyn R, Mastyński J. 1998. Biomanipulation in the Maltański Reservoir. Int Rev Hydrobiol 83: 393–400. [Google Scholar]
  • Gołdyn R, Podsiadłowski S, Dondajewska R, Kozak A. 2014. The sustainable restoration of lakes − towards the challenges of the Water Framework Directive. Ecohydrol Hydrobiol 14: 67–74. [Google Scholar]
  • Golterman HL. 1995. The role of iron hydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297: 43–54. [Google Scholar]
  • Golterman HL. 2004. The Chemistry of Phosphate and Nitrogen Compounds in Sediments. Dordrecht: Kluwer Academic Publishers. [Google Scholar]
  • Grüneberg B, Dadi T, Lindim C, Fischer H. 2015. Effects of nitrogen and phosphorus load reduction on benthic phosphorus release in a riverine lake. Biogeochemistry 123: 1–2, 185–202. [Google Scholar]
  • Horppila J, Holmroos H, Nemistö J, Massa I, Nygren N, Schönach P, Tapio P, Tammeorg O. 2017. Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40 years of different management efforts. Ecol Eng 103: 264–274. [Google Scholar]
  • Hupfer M, Lewandowski J. 2008. Oxygen controls the phosphorus release from lake sediments − a long-lasting paradigm in limnology. Int Rev Hydrobiol 93: 415–432. [Google Scholar]
  • Ishikawa M, Nishimura H. 1989. Mathematical model of phosphate release rate from sediments considering the effect of dissolved oxygen in overlying water. Water Res 23: 351–359. [Google Scholar]
  • James WF, Barko JW. 1991. Littoral-pelagic phosphorus dynamics during night-time convective circulation. Limnol Oceanogr 36: 949–960. [Google Scholar]
  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A. 1992. Iron-phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235–236: 731–743. [Google Scholar]
  • Jiang X, Jin X, Yao Y, Li L, Wu F. 2006. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition. Environ Pollut 141: 482–487. [Google Scholar]
  • Jurajda P, Adámek Z, Janáč M, Roche K, Mikl L, Rederer L, Zapletal T, Koza V, Špaček J. 2016. Use of multiple fish-removal methods during biomanipulation of a drinking water reservoir − evaluation of the first four years. Fish Res 173: 101–108. [Google Scholar]
  • Kasprzak P, Benndorf J, Mehner T, Koschel R. 2002. Biomanipulation of lake ecosystems: an introduction. Freshwater Biol 47: 2277–2281. [CrossRef] [Google Scholar]
  • Katsev S, Dittrich M. 2013. Modelling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol Model 251: 246–259. [CrossRef] [Google Scholar]
  • Kentzer A. 2001. Phosphorus and its bioavailable fractions in the sediments of lakes of different trophy, Dissertations, Nicolaus Copernicus University Press, Toruń (In Polish). [Google Scholar]
  • Klapper H. 2003. Technologies for lake restoration. Papers from Bolsena Conference (2002). Residence time in lakes: science, management, education. J Limnol 62: 73–90. [Google Scholar]
  • Kleeberg A, Dudel GE. 1997. Changes in extent of phosphorus release in a shallow lake (Lake Groβer Muggelsee; Germany, Berlin) due to climatic factors and load. Mar Geol 139: 61–75. [Google Scholar]
  • Kleeberg A, Herzog Ch, Hupfer M. 2013. Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Res 47: 1491–1502. [CrossRef] [PubMed] [Google Scholar]
  • Kleeberg A, Köhler A, Hupfer M. 2012. How effectively does a single or continuous iron supply affect the phosphorus budget of aerated lakes? J Soils Sediments 12: 1593–1603. [Google Scholar]
  • Kleeberg A, Kozerski HP. 1997. Phosphorus release in Lake Groβer Műggelsee and its implications for lake restoration. Hydrobiologia 342–343: 9–26. [Google Scholar]
  • Klimaszyk P, Rzymski P, Piotrowicz R, Joniak T. 2015. Contribution of surface runoff from forested areas to the chemistry of a through-flow lake. Environ Earth Sci 73: 3963–3973. [Google Scholar]
  • Komatsu E, Fukushima T, Shiraishi H. 2006. Modeling of P-dynamics and algal growth in a stratified reservoir − mechanisms of P-cycle in water and interaction between overlying water and sediment. Ecol Model 197: 331–349. [CrossRef] [Google Scholar]
  • Kostecki M, Janta-Koszuta K, Stahl K, Łozowski B. 2017. Speciation forms of phosphorus in bottom sediments of three selected anthropogenic reservoirs with different trophy degree. Arch Environ Prot 43: 44–49. [CrossRef] [Google Scholar]
  • Kowalczewska-Madura K. 2003. Mass balance calculations of nitrogen and phosphorus for Swarzędzkie Lake. Limnol Rev 3: 113–118. [Google Scholar]
  • Kowalczewska-Madura K, Dondajewska R, Gołdyn R. 2008. Influence of iron treatment on phosphorus internal loading from bottom sediments of the restored lake. Limnol Rev 8: 177–182. [Google Scholar]
  • Kowalczewska-Madura K, Dondajewska R, Gołdyn R. 2011. Seasonal changes of phosphorus release from the bottom sediments of Rusałka Lake during the restoration process. Ecol Chem Eng A 18: 219–224. [Google Scholar]
  • Kowalczewska-Madura K, Dondajewska R, Gołdyn R, Podsiadłowski S. 2017. The influence of restoration measures on phosphorus internal loading from the sediments of a hypereutrophic lake. Environ Sci Pollut Res 24: 14417–14429. [CrossRef] [Google Scholar]
  • Kowalczewska-Madura K, Gołdyn R. 2009. Internal loading of phosphorus from sediments of Swarzędzkie Lake (Western Poland). Pol J Environ Stud 18: 635–643. [Google Scholar]
  • Kowalczewska-Madura K, Gołdyn R. 2012. Spatial and seasonal variability of pore water phosphorus concentration in shallow Lake Swarzędzkie, Poland. Environ Monit Assess 18: 1509–1516. [Google Scholar]
  • Kowalczewska-Madura K, Gołdyn R, Dera M. 2015. Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy. Ecol Eng 74: 187–195. [Google Scholar]
  • Kowalczewska-Madura K, Gołdyn R, Dondajewska R. 2010a. The bottom sediments of Lake Uzarzewskie − a phosphorus source or sink? Oceanol Hydrobiol Stud 39: 81–91. [Google Scholar]
  • Kowalczewska-Madura K, Gołdyn R, Dondajewska R. 2010b. Phosphorus release from the bottom sediments of Lake Rusałka (Poznań, Poland). Oceanol Hydrobiol Stud 39: 135–144. [Google Scholar]
  • Kozak A, Kowalczewska-Madura K, Gołdyn R, Czart A. 2014. Phytoplankton composition and physicochemical properties in Lake Swarzędzkie (midwestern Poland) during restoration: preliminary results. Arch Pol Fish 22: 17–28. [CrossRef] [Google Scholar]
  • Kozak A, Rosińska J, Gołdyn R. 2018. Changes in the phytoplankton structure due to prematurely limited restoration treatments. Pol J Environ Stud 27: 1097–1103. [CrossRef] [Google Scholar]
  • Kuczyńska-Kippen N. 2001. Seasonal changes of the rotifer community in the littoral of a polymictic lake. Verh Int Ver Limnol 27: 2964–2967. [Google Scholar]
  • Kuczyńska-Kippen N, Klimaszyk P. 2007. Diel microdistribution of physical and chemical parameters within the dense Chara bed and their impact on zooplankton. Biologia 62: 432–437. [Google Scholar]
  • Lampert W, Sommer U. 1999. Limnoökologie. Stuttgart, New York: Georg Thieme Verlag. [Google Scholar]
  • Lewandowski J, Schauser I, Hupfer M. 2003. Long term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany). Water Res 37: 3194–3204. [CrossRef] [PubMed] [Google Scholar]
  • Mataraza LK, Cooke GD. 1997. A test of a morphometric index to predict vertical phosphorus transport in lakes. J Lake Reserv Manag 13: 328–337. [CrossRef] [Google Scholar]
  • Mehner T, Benndorf J, Kasprzak P, Koschel R. 2002. Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biol 47: 2453–2465. [CrossRef] [Google Scholar]
  • Meis S, Spears BM, Maberly SC, O’Malley MB, Perkins RG. 2012. Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): investigating changes in sediment elemental composition and phosphorus fractionation. J Environ Manag 93: 185–193. [CrossRef] [Google Scholar]
  • PN-EN ISO 6878:2006. Water Quality − Determination of Phosphorus − Ammonium Molybdate Spectrometric Method (ISO 6878:2004) ICS:13.060.50. [Google Scholar]
  • Pociecha A, Wilk-Woźniak E. 2008. Comments on the diet of Asplanchna priodonta (Gosse, 1850) in the Dobczycki dam reservoir on the basis of field sample observations. Oceanol Hydrobiol Stud 37: 63–69. [CrossRef] [Google Scholar]
  • Podsiadłowski S, Osuch E, Przybył J, Osuch A, Buchwald T. 2018. Pulverizing aerator in the process of lake restoration. Ecol Eng. DOI: http://dx.doi.org/10.1016/j.ecoleng.2017.06.032 [PubMed] [Google Scholar]
  • Psenner R, Boström B, Dinka M, Pettersson K, Pucsko R, Sager M. 1988. Fractionation of phosphorus in suspended matter and sediment. Arch Hydrobiol Beih Ergebn Limnol 30: 83–112. [Google Scholar]
  • Rosińska J, Gołdyn R. 2015. Changes in macrophyte communities in Lake Swarzędzkie after the first year of restoration. Arch Pol Fish 23: 43–52. [CrossRef] [Google Scholar]
  • Rosińska J, Kozak A, Dondajewska R, Gołdyn R. 2017a. Cyanobacteria blooms before and during the restoration process of a shallow urban lake. J Environ Manag 198: 340–347. [CrossRef] [Google Scholar]
  • Rosińska J, Kozak A, Dondajewska R, Kowalczewska-Madura K, Gołdyn R. 2018. Water quality response to sustainable restoration measures − case study of urban Swarzędzkie Lake. Ecol Indic 84: 437–449. [Google Scholar]
  • Rosińska J, Rybak M, Gołdyn R. 2017b. Patterns of macrophyte community recovery as a result of the restoration of a shallow urban lake. Aquat Bot 138: 45–52. [Google Scholar]
  • Søndergaard M, Jensen JP, Jeppensen E. 2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes. Review article. Sci World 1: 427–442. [CrossRef] [Google Scholar]
  • Søndergaard M, Jeppesen E, Lauridsen L, Skov C, Nes E, Roijackers R, Lammens E, Portielje R. 2007. Lake restoration: successes, failures and long-term effects. J Appl Ecol 44: 1095–1105. [Google Scholar]
  • Søndergaard M, Ripl W, Wolter KD. 2002. Chemical treatment of water and sediments with special reference to lakes. In: Perrow MR and Davy AJ (eds.), Handbook of Ecological Restoration, Cambridge: Cambridge University Press, pp. 184–205. [CrossRef] [Google Scholar]
  • Standard Methods. 1999. Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation. [Google Scholar]
  • Stefaniak K, Gołdyn R, Kowalczewska-Madura K. 2007. Changes of summer phytoplankton communities in Lake Swarzędzkie in the 2000–2003 period. Oceanol Hydrobiol Stud 36: 77–85. [Google Scholar]
  • Stephen D, Moss B, Philips G. 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342: 27–34. [Google Scholar]
  • Szyper H, Gołdyn R, Romanowicz W. 1994. Lake Swarzedzkie and its influence upon the water quality of the river Cybina − PTPN. Pr Kom Biol 74: 7–31. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.