Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 54, 2018
Article Number 35
Number of page(s) 7
DOI https://doi.org/10.1051/limn/2018027
Published online 23 November 2018
  • Akasaka M, Takamura N, Mitsuhashi H, Kadono Y. 2010. Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshwater Biol 55: 909–922. [CrossRef] [Google Scholar]
  • Akasaka M, Takamura N. 2012. Hydrologic connection between ponds positively affects macrophyte α and γ diversity but negatively affects β diversity. Ecology 93: 967–973. [CrossRef] [PubMed] [Google Scholar]
  • Alahuhta J, Vuori K-M, Luoto M. 2011. Land use, geomorphology and climate as environmental determinants of emergent aquatic macrophytes in boreal catchments. Boreal Environ Res 16: 185–202. [Google Scholar]
  • Alahuhta J, Kanninen A, Vuori K-M. 2012. Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquat Bot 103: 106–114. [CrossRef] [Google Scholar]
  • Alahuhta J, Kaninen A, Hellsten S, Vuori K-M, Kuoppala M, Hämäläinen H. 2014. Variable response of functional macrophyte groups to lake characteristics, land use, and space: implications for bioassessment. Hydrobiologia 737: 201–214. [CrossRef] [Google Scholar]
  • Baattrup-Pedersen A, Riis T. 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshw Biol 42: 375–385. [CrossRef] [Google Scholar]
  • Barko JW, Smart RM. 1983. Effects of organic matter additions to sediment on the growth of aquatic plants. J Ecol 71: 161–175. [CrossRef] [Google Scholar]
  • Barko JW, Adams MS, Clesceri NL. 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J Aquat Plant Manage 24: 1–10. [Google Scholar]
  • Bornette G, Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat Sci 73: 1–14. [CrossRef] [Google Scholar]
  • Bubíková K, Hrivnák R. 2018. Comparative macrophyte diversity of waterbodies in the Central European landscape. Wetlands 38: 451–459. [CrossRef] [Google Scholar]
  • Calgano V, Mazancourt C. 2010. glmulti: An R package for easy automated model selection with (generalized) linear models. J Stat Softw 34: 12. [Google Scholar]
  • Calcagno V. 2013. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. http://CRAN.R-project.org/package=glmulti. [Google Scholar]
  • Canfield DE, Langeland KA, Linda SB, Haller WT. 1985. Relation between water transparency and maximum depth of macrophyte colonization in lakes. J Aquat Plant Manag 23: 25–28. [Google Scholar]
  • Carpenter SR, Caraco NF, Correl DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl. 8: 559–568. [Google Scholar]
  • Chambers PA, Prepas EE, Hamilton HR, Bothwell ML. 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol Appl 1: 249–257. [CrossRef] [PubMed] [Google Scholar]
  • Crivelli AJ. 1983. The destruction of aquatic vegetation by carp. Hydrobiologia 106: 37–41. [CrossRef] [Google Scholar]
  • Daniel H, Bernez I, Haury J. 2006. Relationships between macrophytic vegetation and physical features of river habitats: the need for a morphological approach. Hydrobiologia 570: 11–17. [CrossRef] [Google Scholar]
  • Davies BR, Biggs J, Williams PJ, Lee JT, Thompson S. 2008. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597: 7–17. [CrossRef] [Google Scholar]
  • Deil U. 2005. A review on habitats, plant traits and vegetation of ephemeral wetlands − a global perspective. Phytocoenologia 35: 533–705. [CrossRef] [Google Scholar]
  • Dienst M, Schmieder K, Ostendorp W. 2004. Effects of water level variations on the dynamics of the reed belts of Lake Constance. Limnologica 34: 29–36. [CrossRef] [Google Scholar]
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Léveque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81: 163–182. [Google Scholar]
  • Edvardsen A, Økland RH. 2006. Variation in plant species composition in and adjacent to 64 ponds in SE Norwegian agricultural landscapes. Aquat Bot. 85: 92–102. [CrossRef] [Google Scholar]
  • Furey PC, Nordin RN, Mazumder A. 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reserv Manag. 20: 280–295. [CrossRef] [Google Scholar]
  • Grinberga L. 2011. Macrophyte species composition in streams of Latvia under different flow and substrate conditions. Estonian J Ecol 60: 194–208. [CrossRef] [Google Scholar]
  • Haslam SM. 2006. River Plants. Cambridge: Cambridge University Press, 438 p. [Google Scholar]
  • Havens KE, Sharfstein B, Brady MA, East TL, Harwell MC, Maki RP, Rodusky AJ. 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquat Bot 78: 67–82. [CrossRef] [Google Scholar]
  • Hill NM, Keddy PA, Wisheu IC. 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environ Manage 22: 723–736. [CrossRef] [PubMed] [Google Scholar]
  • Hilli M, Kuitunen MT, Suhonen J. 2007. The effects of land use change on the vascular plant species turnover in boreal lakes. Biodivers Conserv 16: 3951–3962. [CrossRef] [Google Scholar]
  • Hrivnák R, Oťaheľová H, Kochjarová J, Paľove-Balang P. 2013. Effect of environmental conditions on species composition of macrophytes in two distinct biogeographical regions of Central Europe. Knowl Manag Aquat Ecosyst 411: 09. [CrossRef] [Google Scholar]
  • Kolada A. 2010. The use of aquatic vegetation in lake assessment: testing the sensitivity of macrophyte metrics to anthropogenic pressures and water quality. Hydrobiologia 656: 133–147. [CrossRef] [Google Scholar]
  • Kolada A. 2016. The use of helophytes in assessing eutrophication of temperate lowland lakes: added value? Aquat Bot 129: 44–54. [CrossRef] [Google Scholar]
  • Krolová M, Čížková H, Hejzlar J, Poláková S. 2013. Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowl Manag Aquat Ecosyst 408: 07. [CrossRef] [Google Scholar]
  • Lacoul P, Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 14: 89–136. [CrossRef] [Google Scholar]
  • Landucci F, Tichý L, Šumberová K, Chytrý M. 2015. Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation. J Veg Sci 26: 791–803. [CrossRef] [Google Scholar]
  • Lauridsen TL, Jeppesen E, Declerck SAJ, De Meester L, Conde-Porcuna JM, Rommens W, Brucet S. 2015. The importance of environmental variables for submerged macrophyte community assemblages and coverage in shallow lakes: differences between northern and southern Europe. Hydrobiologia 744: 49–61. [CrossRef] [Google Scholar]
  • Marhold K, Hindák F. 1998. Checklist of Non-vascular and Vascular Plants of Slovakia. Bratislava: Veda, 687 p. [Google Scholar]
  • McCullagh P, Nelder JA. 1989. Generalized Linear Models, second edition. London: Chapman & Hall, 532 p. [Google Scholar]
  • Miklós L. 2002. Atlas Krajiny Slovenskej Republiky. 1. vydanie (Landscape Atlas of Slovakia, first edition). Banská Bystrica: Ministerstvo životného prostredia Slovenskej republiky, Bratislava & Slovenská agentúra životného prostredia, 342 p. [Google Scholar]
  • Novikmec M, Hamerník L, Kočický D, Hrivnák R, Kochjarová J, Oťaheľová H, Paľove-Balang P, Svitok M. 2016. Ponds and their catchments: size relationships and influence of land use across multiple spatial scales. Hydrobiologia 774: 155–166. [CrossRef] [Google Scholar]
  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2016. vegan: Community Ecology Package. R package version 2. 3-3. http://CRAN.R-project.org/package=vegan. [Google Scholar]
  • R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [Google Scholar]
  • Riis T, Biggs J, Flanagan M. 2003. Seasonal changes in macrophyte biomass in South Island lowland streams, New Zealand. N Z J Mar Freshwater Res 37: 381–388. [Google Scholar]
  • Riis T, Olesen B, Clayton JS, Lambertini C, Brix H, Sorrell B. 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat Bot 102: 56–64. [CrossRef] [Google Scholar]
  • Sand-Jensen K, Borum J. 1991. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41: 137–175. [CrossRef] [Google Scholar]
  • Sand-Jensen K, Pedersen NL, Thorsgaard I, Moeslund B, Borum J, Brodersen KP. 2008. 100 years of vegetation decline and recovery in Lake Fure, Denmark. J Ecol 96: 260–271. [CrossRef] [Google Scholar]
  • Scheffer M, Hosper SH, Meijer M-L., Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8: 275–279. [CrossRef] [PubMed] [Google Scholar]
  • Søndergaard M, Jeppesen E, Peder-Jensen J, Amsinck SL. 2005. Water Framework Directive: ecological classification of Danish lakes. J Appl Ecol 42: 616–629. [CrossRef] [Google Scholar]
  • Stendera S, Adrian R, Bonada N, Canedo-Argüelles M, Hugueny B, Januschke K, Pletterbauer F, Hering D. 2012. Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696: 1–28. [CrossRef] [Google Scholar]
  • Svitok M, Hrivnák R, Kochjarová J, Oťaheľová H, Paľove-Balang P. 2016. Environmental thresholds and predictors of macrophyte species richness in aquatic habitats in central Europe. Folia Geobot 51: 227–238. [CrossRef] [Google Scholar]
  • Toivonen H, Huttunen P. 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat Bot 51: 197–221. [CrossRef] [Google Scholar]
  • Varanka S, Luoto M. 2012. Environmental determinants of water quality in boreal rivers based on partitioning methods. River Res Appl 28: 1034–1046. [CrossRef] [Google Scholar]
  • Weisner SEB, Strand JA, Sandesten H. 1997. Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes. Oecologica 109: 592–599. [CrossRef] [PubMed] [Google Scholar]
  • Welch NH, Butler MG, Cerlson TJ, Hadson MA. 2003. Changes in macrophyte community structure in Lake Christina (Minnesota), a large shallow lake, following biomanipulation. Aquat Bot 75: 323–337. [CrossRef] [Google Scholar]
  • Wheeler B, Torchiano M. 2016. lmPerm: Permutation tests for linear models. R package version 2.1. 0. [Google Scholar]
  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D. 2004. Comparative diversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115: 329–341. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.