Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 467 - 483
DOI https://doi.org/10.1051/limn/2017026
Published online 16 November 2017
  • ABNT. 1987. NBR 9898:1987–Preservação e técnicas de amostragem de efluentes líquidos e corpos receptores. [Google Scholar]
  • Alcântara E, Novo EM, Stech J, Barbosa CF, Bonnet MP, Stech J, Ometto JP. 2011. Environmental factors associated with long-term changes in chlorophyll-a concentration in the Amazon floodplain. Biogeosci Discuss 8: 3770–2011. [Google Scholar]
  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2014. Köppen's climate classification map for Brazil. Meteorol Z 22: 711–728. [CrossRef] [Google Scholar]
  • Arcifa MS, Castilho MSM, Carmouze JP. 1994. Composition et évolution du zooplancton dans une lagune tropicale (Brésil) au cours d'une période marquée par une mortalité de poissons. Rev Hydrobiol Trop 27: 251–263. [Google Scholar]
  • Bozelli RL. 1992. Composition of the zooplankton community of Batata and Mussurá lakes and of the Trombetas River, State of Pará, Brasil. Amazoniana 12: 239–261. [Google Scholar]
  • Brasil. 2005. Ministério do Desenvolvimento Urbano e Meio Ambiente. Conselho Nacional do Meio Ambiente −CONAMA. 2005. Resolução n° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências Diário Oficial da República Federativa do Brasil, Brasília, DF, 18 March. 2005. [Google Scholar]
  • Brito SAC, Camargo M, Melo NFAC, Estupiñan RA. 2015. A checklist for the zooplankton of the Middle Xingu − an Amazon River system. Braz J Biol 75: S55–S64. [CrossRef] [Google Scholar]
  • Brown RM, Mcclelland NI, Deininger RA, Tozer RG. 1970. A water quality index: do we dare? Water Sew Works 117: 339–343. [Google Scholar]
  • Buraschi E, Salerno F, Monguzzi C, Barbiero G, Tartari G. 2005. Characterization of the Italian lake-type and identification of their reference site using anthropogenic pressure factors. J Limnol 64: 75–84. [CrossRef] [Google Scholar]
  • Burden DG, Malone RF. 1987. A classification of freshwater Louisiana lakes based on water quality and user perception data. Environ Monit Assess 9: 197–193. [Google Scholar]
  • Busch WDN, Sly PG. (Eds.) 1992. The development of an aquatic habitat classification system for lakes. Boca Raton, FL: CRC Press, 240 p. [Google Scholar]
  • Cáceres CE, Soluk DA. 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408. [CrossRef] [PubMed] [Google Scholar]
  • Calijuri MC, Santos ACA, Jati S. 2002. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (barra Bonita, S.P. −Brazil). J Plankton Res 24: 617–634. [CrossRef] [Google Scholar]
  • Camarero L, Rogora M, Mosello R, Anderson NJ, Barbieri A, Botev I et al. 2009. Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54: 2452–2469. [CrossRef] [Google Scholar]
  • Cardoso AC, Duchemin J, Magoarou P, Premazzi G. 2001. Criteria for the identification of freshwaters subject to eutrophication: their use for the implementation of the nitrates and urban waste water treatment directives. EUR Report 19810 EN. Luxembourg: European Commission Joint Research Centre. [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • Catalan J, Rondón JCD. 2016. Perspective for an integrated understanding of tropical and temperate high-mountain lakes. J Limnol 75: 215–234. [CrossRef] [Google Scholar]
  • CETESB. 2006. Dispõe sobre a homologação da revisão da Norma Técnica L5.303 − Fitoplâncton de Água Doce − Métodos Qualitativo e Quantitativo (Método de Ensaio) − dez/2005. Companhia de Tecnologia de Saneamento Ambiental, Secretária de Meio Ambiente, Estado de São Paulo. (http://www.bmn.com.br/plan-leg/ma/est-sp/decis/cetesb42-06.pdf). Accessed on 11/05/2015. [Google Scholar]
  • Chellapa NT, Câmara FRA, Rocha O. 2009a. Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves Reservoir and Pataxó Channel, Rio Grande do Norte, Brazil. Braz J Biol 69: 241–251. [CrossRef] [Google Scholar]
  • Chellappa NT, Chellappa T, Camara FRA, Rocha O, Chellappa S. 2009b. Impact of stress and disturbance factors on the phytoplankton communities in northeastern Brazil reservoir. Limnologica 39: 273–282. [CrossRef] [Google Scholar]
  • Cohen GM, Shurin JB. 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103: 603–617. [CrossRef] [Google Scholar]
  • Companhia de Tecnologia de Saneamento Ambiental (CETESB), (2004, 2005 and 2006). Relatório 57 de Qualidade das Águas Interiores do Estado de São Paulo, São Paulo. [Google Scholar]
  • Costa IAS, Cunha SRSC, Panosso R, Araújo MFF, Melo JLS, Eskinazi Sant'anna EM. 2009. Dinâmica de cianobactérias em reservatórios eutróficos do semi-árido do Rio Grande do Norte. Oecol Bras 13: 382–401. [Google Scholar]
  • Cunha DGF, Calijuri MC. 2011. Variação sazonal dos grupos funcionais fitoplanctônicos em braços de um reservatório tropical de usos múltiplos no estado de São Paulo (Brasil). Acta Bot Bras 25: 822–831. [CrossRef] [Google Scholar]
  • Cunha EDS, Cunha AC, Silveira Jr AM, Faustino SMM. 2013. Phytoplankton of two rivers in the eastern Amazon: characterization of biodiversity and new occurrences. Acta Bot Bras 27: 364–377. [CrossRef] [Google Scholar]
  • Dantas EW, Moura AN, Bittencourt-Oliveira MC, Arruda-Neto JDT, Cavalcanti ADC. 2008. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. Acta Bot Bras 22: 970–982. [CrossRef] [Google Scholar]
  • Diehl S, Berger S, Ptacnik R, Wild A. 2002. Phytoplankton, light and nutrients in a gradient of mixing depths: field experiments. Ecology 83: 399–411. [CrossRef] [Google Scholar]
  • Dokulil MT, Teubner K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12. [CrossRef] [Google Scholar]
  • Domingos P, Huszar VLM, Carmouze JPC. 1994. Composition et biomasse du phytoplancton d'une lagune tropicale (Brésil) au cours d'une période marquée par une mortalité de poissons. in : la lagune de la barra (Brésil) : Causes et conséquences d'une mortalité de poissons. Rev Hydrobiole Trop 27: 235–250. [Google Scholar]
  • Downing AL, Turesdate Z. 1995. Some factors affecting rate of solution of oxygen in water. J Appl Chem 5: 570. [CrossRef] [Google Scholar]
  • Elmoor-Loureiro LMA. 1997. Manual de identificação de cladóceros límnicos do Brasil, Universa, Brasília, 156 p. [EDP Sciences] [Google Scholar]
  • EPA 2004. Method 9060A − Total organic carbon. 5P. Revision 1. United States Environmental Protection Agency. [Google Scholar]
  • U.S. Environmental Protection Agency. 2009. Water Quality Standards http://www.epa.gov/waterscience/standards/wqslibrary/az/az9wqs.pdf. [Google Scholar]
  • Eskinazi-Sant'Anna EM, Menezes R, Xosta IS, Araújo M, Panosso R, Attayde JL. 2013. Zooplankton assesmblages in eutrophic reservoirs of the Brazilian semi-arid. Braz J Biol 73: 37–52. [CrossRef] [Google Scholar]
  • Ezekiel Y, Tukur AL, Mubi AM. 2015. Morphometric characteristics of selected fluviatile lakes in the Upper benue Valley area of Adamawa state, Northeastern Nigeria. J Geogr Reg Plann 8: 56–64. [CrossRef] [Google Scholar]
  • Finlay BJ, Esteban GF, Fenchel T. 1996. Global diversity and body size. Nature 386: 132–133. [CrossRef] [Google Scholar]
  • Fonseca BM, Bicudo CEM. 2008. Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garças Pond, Brazil). Hydrobiologia 600: 267–282. [CrossRef] [Google Scholar]
  • Frisch D, Cottenie K, Badosa A, Green A. 2012. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS One 7: 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Golder. 2010. Anexo IV − Geologia. Estudo de Impacto Ambiental, EIA Projeto Ferro Carajás S11D. [Google Scholar]
  • Gomes EAT, Godinho MJL. 2003. Structure of the protozooplankton community in a tropical shallow and eutrophic lake in Brazil. Acta Oecol 24: S153–S161. [CrossRef] [Google Scholar]
  • Guimarães JTF, Souza-Filho PWM, Alves R, Souza EB, Costa FR, Reis LS et al., 2014. Source and distribution of pollen and spores in surface sediments of a plateau lake in southeastern Amazonia. Quat Int 26: 181–196. [CrossRef] [Google Scholar]
  • Guimarães JTF, Rodrigues TMR, Reis LS, De Figueiredo MMJC, Da Silva DF, Alves R, Giannini TC, Carreira LMM, Dias ACR, Silva EF, Sahoo PK, Silva MS, Souza-filho PWM. (2017) Modern pollen rain as a background for palaeoenvironmental studies in the Serra dos Carajás, southeastern Amazonia. Holocene 27: 1055–1066. [CrossRef] [Google Scholar]
  • Gunkel G. 2000. Limnology of an equatorial high mountain lake in Eucador, Lago San Pablo. Limnologica 30: 113–120. [CrossRef] [Google Scholar]
  • Hakanson 2005. The important of lake morphology and catchment characteristics in limnology − ranking based on statistical analysis. Hydrobiologia 541: 117–137. [CrossRef] [Google Scholar]
  • Häkanson L, Jansson M. 1983. Principles of lake sedimentology. Heidelberg: Springer Verlag, 316 p. [Google Scholar]
  • Hardy ER. 1980. Composição do zooplâncton em cinco lagos da Amazônia Central. Acta Amaz Manaus 10: 557–609. [CrossRef] [Google Scholar]
  • Havel JE, Shurin J.B. 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49: 1229–1238. [CrossRef] [Google Scholar]
  • Hillebrand H, Watermann F, Karez R, Berninger UG. 2001. Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126: 114–124. [CrossRef] [PubMed] [Google Scholar]
  • Hundey EJ, Russell SD, Longstaffe FJ, Moser KA. 2016. Agriculture causes nitrate fertilization of remote alpine lakes. Nat Commun 7: 10571. [CrossRef] [PubMed] [Google Scholar]
  • Huszar VLM, Reynolds CS. 1997. Phytoplankton periodicity and sequences of dominance in an amazonian flood-plain lake (Lago Batata, Pará, Brasil): response to gradual environment change. Hydrobiologia 346: 169–181. [CrossRef] [Google Scholar]
  • Huszar VLM, Silva LHS, Marinho M, Domingos Sant'Anna P. 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian Waters. Hydrobiologia 424: 67–77. [CrossRef] [Google Scholar]
  • Hutchinson GE, Löffler H. 1956. The thermal classification of lakes. Proc Natl Acad Sci Washington 42: 84–86. [CrossRef] [Google Scholar]
  • Incagnone G, Marrone F, Robba L, Barone R, NaselliFlores L. 2015. How do freshwater organisms cross the ‘‘dry ocean’’? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123. [Google Scholar]
  • Kaul V. 1977. Limnological survey of Kashmir lakes with reference to trophic status and conservation. Int J Ecol Environ Sci 3: 29–44. [Google Scholar]
  • Koste W. 1978. Die Radertiere Mitteleuropas begrundet von Max Voigt. Stuttgart: Gebruder Borntraeger, 673 p. [Google Scholar]
  • Lamparelli MC. 2004. Degrees of trophy in water bodies of São Paulo: Evaluation of monitoring methods. Doctoral Thesis, Institute of Biosciences, University of São Paulo, São Paulo. [Google Scholar]
  • Lewis WMJr. 1987. Tropical limnology. Ann Rev Ecol Syst 18: 159–184. [CrossRef] [Google Scholar]
  • Livingstone DA. 2003. Global climate change strikes a tropical lake. Science 301: 468–469. [CrossRef] [PubMed] [Google Scholar]
  • Lopes PM, Bini LM, Declerck SAJ, Farjalla VF, Vieira LCG, Bonecker CC, Lansac-Tôha FA, Esteves FA, Bozelli RL. 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS One 9: E109581. [CrossRef] [PubMed] [Google Scholar]
  • Lopes PM, Caliman A, Carneiro LS, Bini LM, Esteves FA, et al. 2011. Concordance among assemblages of upland Amazonian lakes and the structuring role of spatial and environmental factors. Ecol Indic 11: 1171–1176. [CrossRef] [Google Scholar]
  • Louette G. De Meester L. 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86: 353–359. [CrossRef] [Google Scholar]
  • Lund JWH, Kipling C, Lecren ED. 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170. [CrossRef] [Google Scholar]
  • Margaritora FG, Bazzanti M, Ferrara O, Mastrantuono L, Seminara M, Vagaggini D. 2003. Classification of the ecological status of volcanic lakes in Central Italy. J Limnol 62: 49–59. [CrossRef] [EDP Sciences] [Google Scholar]
  • Maurity CW, Kotschoubey B. 1995. Evolução recente da cobertura de alteração no platô N1- Serra dos Carajás-PA: Degradação, pseudocarstificação, espeleotemas. Boletim do Museu Paraense Emilio Goeldi. Série Ciênc da Terra 7: 331–362. [Google Scholar]
  • Mazumder A, Taylor WD, McQueen DJ, Lean DRS. 1990. Effects of fish and plankton on lake temperature and mixing depth. Science 247: 312–315. [CrossRef] [PubMed] [Google Scholar]
  • Melo S, Huszar VLM. 2000. Phytoplankton in an Amazonian floodplain lake (Lago Batata, Brasil): diel variation and species strategies. J Plankton Res 22: 63–76. [CrossRef] [Google Scholar]
  • Molisani MM, Barroso HS, Becker H, Moreira MOP, Hijo CAG, Monte TM, et al. 2010. Trophic state, phytoplankton assemblages and limnological diagnosis of the Castanhão Reservoir, CE, Brazil. Acta Limnol Bras 22: 1–12. [CrossRef] [EDP Sciences] [Google Scholar]
  • Moraes BC, Costa JMN, Costa ACLM, Costa MH. 2005. Variação espacial e temporal da precipitação no estado do Pará. Acta Amaz 35: 207–214. [CrossRef] [EDP Sciences] [Google Scholar]
  • Morais MC, Martins PPM, Paradella WR. 2011. Mapping iron-mineralized laterite environments based on textural attributes from MAPSAR image simulation − SAR R99B (SIVAM/SIPAM) in the Amazon Region. Rev Bras Geof 29: 99–111. [CrossRef] [Google Scholar]
  • Moses SA, Janaki L, Joseph S, Justus J, Vimala SR. 2011. Influence of lake morphology on water quality. Environ Monit Assess 182: 443–454. [CrossRef] [PubMed] [Google Scholar]
  • Neves IF, Rocha O, Roche KF, Pinto AA. 2003. Zooplankton community structure of two marginal lakes of the river cuiabá (Mato Grosso, Brazil) with analysis of rotifera and cladocera diversity. Braz J Biol 63: 329–343. [CrossRef] [Google Scholar]
  • Obertegger U, Flaim G, Fontaneto D. 2014. Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshw Biol 59: 2413–2427. [CrossRef] [Google Scholar]
  • Okogwu OI. 2010. Seasonal variations of species composition and abundance of zooplankton in Ehoma Lake, a floodplain lake in Nigeria. Rev Biol Trop 58: 171–182. [PubMed] [Google Scholar]
  • Osborne PL. Eutrophication of Shallow tropical lakes. In O'Sullivan PE, Reynolds CS eds The Lakes Handbook, Volume 2: Lake Restoration and Rehabilitation, Oxford, UK: Blackwell Science Ltd, 2004. [Google Scholar]
  • Paradella WR, Ferretti A, Mura et al. 2015. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng Geol 193: 61–78. [Google Scholar]
  • Pasztaleniec A, Poniewozik M. 2010. Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive − a comparison of approaches. Limnologica 40: 251–259. [CrossRef] [Google Scholar]
  • Petrucio MM, Barbosa FAR, Furtado ALS. 2006. Bacterioplankton and phytoplankton production in seven lakes in the Middle Rio Doce basin, South-east Brazil. Limnologica 36: 192–203. [CrossRef] [Google Scholar]
  • Previattelli D, PerbicheiNeves G, Santos-Silva En. 2013. Diaptomidae records (Crustacea: Copepoda: Calanoida: Diaptomidae) in the Newotropical region. Check List 9: 700–713. [CrossRef] [Google Scholar]
  • Podsetchine V, Schernewski G. 1999. The influence of spatial wind in homogeneity on flow patterns in a small lake. Water Res 33: 3348–3356. [CrossRef] [Google Scholar]
  • R Core Team 2012. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, http://www.R-project.org/. [Google Scholar]
  • Ramos SM, Vaz APMS, Gusti DA, Filho EFR. 2016. Relationship between geological domain and physicochemical parameters in lotic system. Braz J Water Res 21: 882–893. [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Robertson BA, Hardy ER. Zooplankton of amazonian lakes and rivers. In: Sioli H, ed. The amazon − limnology and landscape, ecology of a mighty tropical river and its basin. Netherlands: W. Junk Publishers, 1984. pp. 337–352. [Google Scholar]
  • Rocha O, Sendacz S, Matsumura-Tundisi T. 1995. Composition, biomass and productivity of zooplankton in natural lakes and reservoirs in Brazil. In: Tundisi JG, Bicudo CEM & Matsumura-Tundisi T eds, Rio De Janeiro: Limnology in Brazil. ABC/SBL, pp. 151–166. [Google Scholar]
  • Rowan JS, Soutar I, Philips GE. 2006. Morphometric analysis of UK lake systems as a compliance tool for the European water framework directive. Sediment Dyn Hydromorphology Fluv Sys. In: Proceedings of a symposium held in Dundee, UK: IAHS Publ. [Google Scholar]
  • Sahoo PK, Souza-Filho PWM, Guimarães JTF, Silva MS, Costa FR, Manes CLO, Oti D, et al. 2015. A multi-proxy geochemical study of surface sediments in a plateau lake of Carajás in the southeastern Amazon region: implication for provenance and post depositional processes. Appl Geochem 52: 130–146. [CrossRef] [Google Scholar]
  • Sahoo PK, Guimarães JTF, Souza-Filho PWM, Silva MS, Silva Júnior RO, Pessim G, et al. 2016. Influence of seasonal variation on the hydro-biogeochemical characteristics of two upland lakes in the Southeastern Amazon, Brazil. An Acad Bras Cienc 88: 2211–2227. [CrossRef] [PubMed] [Google Scholar]
  • Sawane AP, Puranik PG, Bhate AM. 2006. Impact of industrial pollution on river Irai, district Chandrapur with reference to fluctuation in CO2 and pH. Aquat Biol 21: 105–110. [EDP Sciences] [Google Scholar]
  • Shurin JB. 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81: 3074–3086. [CrossRef] [Google Scholar]
  • Silva AQ, Paradella WR, Freitas CC, Oliveira CG. 2009. Relationship between PALSAR backscatter and surface-roughness parameters from iron laterites in Carajás, Amazon region. IEEE Trans Geosci Remote Sens 47: 4027–4031. [CrossRef] [Google Scholar]
  • Silva IG, Moura AN, Dantas EW. 2013. Phytoplankton community of Reis lake in the Brazilian Amazon. An Acad Bras Cienc 85: 649–663. [CrossRef] [PubMed] [Google Scholar]
  • Skowron R. 2009. Criteria of thermal classification of lakes. Bull Geogr Phys Geogr Ser 2: 89–105. [CrossRef] [Google Scholar]
  • SMEWW. 2005. 1060–Collection and preservation of samples. Standard Methods for the Examination of Water and Wastewater. [Google Scholar]
  • Souza KF, Melo S. 2011. Levantamento taxonômico de desmídias (Chlorophyta) do Lago Novo (Amapá, Brasil): gêneros Staurastrum, Staurodesmus e Xanthidium. Acta Amaz 41: 335–346. [CrossRef] [Google Scholar]
  • Stefanidis K, Papastergiadou E. 2012. Relationships between lake morphometry, water quality, and aquatic macrophytes, in greek lakes. Fresen Environ Bull 21: 10a. [Google Scholar]
  • Taylor JW. 1984. The Acid Test. Natural Resources Magazine, Wis Dept of Natural Resources, 40 p. [Google Scholar]
  • Tonetta D, Hennemann MC, Brentano DM, Petrucio MM. 2015. Considerations regarding the dominance of Cylindrospermopsis raciborskii under low light availability in a low phosphorus lake. Acta Bot Bras 29: 448–451. [CrossRef] [Google Scholar]
  • Utermöhl H. 1958 Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Verein Theor Angew Limnol 9: 1–38. [Google Scholar]
  • Vanschoenwinkel B, Gielen S, Seaman M, Brendonck L. 2008. Any way the wind blows − frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134. [CrossRef] [Google Scholar]
  • Vollenweider RA. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33: 53–83. [Google Scholar]
  • Wang M, Hou J, Lei Y. 2014. Classification of Tibetan lakes based on variations in seasonal lake water temperature. Chin Sci Bull 59: 4847–4855. [CrossRef] [Google Scholar]
  • Wetzel RG. 1983. The oxygen content in freshwater. In: Brown M, ed. Limnology, p. 172. [Google Scholar]
  • Wetzel RG. 2001. The phosphorus cycle. Limnology: lake and river ecosystems, 3rd ed. San Diego: Acad. Press, 1006 p. [EDP Sciences] [Google Scholar]
  • WHO. 1997. Guideline for drinking water quality, V-3. World Health Organization. [Google Scholar]
  • Wojciechowski J, Padial AA. 2015. Monitoring studies should consider temporal variability to reveal relations between cyanobacterial abundance and environmental variables. An Acad Bras Cienc 87: 1717–1726. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.