Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 391 - 400
Published online 11 October 2017
  • Alfonso MB, Vitale AJ, Menéndez MC, Perillo VL, Piccolo MC, Perillo GME. 2015. Estimation of ecosystem metabolism from diel oxygen technique in a saline shallow lake: La Salada (Argentina). Hydrobiologia 752: 223–237. [CrossRef] [Google Scholar]
  • Aliaga VS, Ferrelli F, Piccolo MC. 2017. Regionalization of climate over the Argentine Pampas. Int J Climatol 37: 1237–1247. doi: 10.1002/joc.5079. [CrossRef] [Google Scholar]
  • APHA-AWWA-WPCF. 1998. Standard methods for the examination of water and wastewater. Washington, DC. [Google Scholar]
  • Baloch WA, Jafri SIH, Soomro AN. 2009. Occurrence of planktonic rotifer in Thar desert (Sindh, Pakistan). Transylv Rev Syst Ecol Res 8: 87. [EDP Sciences] [Google Scholar]
  • Barker T, Hatton K, O'Connor M, Connor L, Bagnell L, Moss B. 2008. Control of ecosystem state in a shallow, brackish lake: implications for the conservation of stonewort communities. Aquat Conserv: Mar Freshw Ecosyst 18: 221–240. [CrossRef] [Google Scholar]
  • Barnes BD, Wurtsbaugh WA. 2015. The effects of salinity on plankton and benthic communities in the Great Salt Lake, Utah, USA: a microcosm experiment. Can J Fish Aquat Sci 72: 807–817. [CrossRef] [Google Scholar]
  • Beklioglu M, Romo S, Kagalou I, Quintana X, Bécares E. 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326. [CrossRef] [Google Scholar]
  • Bersain G. 2012. Laguna La Salada de Pedro Luro, Partido de Villarino. Campaña de relevamientos limnológicos e ictiológicos. Informe Técnico N°136. Estación Hidrobiológica de Chascomús. Dirección de desarrollo de aguas continentales y acuicultura. Dirección provincial de pesca. Ministerio de Asuntos Agrarios. Ciudad de Buenos Aires, Buenos Aires, 20 p. [Google Scholar]
  • Bohn VY, Delgado AL, Piccolo MC, Perillo GM. 2016. Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environ Earth Sci 75: 1–15. [CrossRef] [Google Scholar]
  • Borics G, Tóthmérész B, Lukács BA, Várbíró G. 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262. [CrossRef] [Google Scholar]
  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A, Kurasawa H, Larsson P, Weglenska T. 1976. A review of some problems in zooplankton production studies. Norw J Zool 24: 419–456. [Google Scholar]
  • Brandorff GO, Pinto-Silva VA, Morini AA. 2011. Zooplankton: species diversity, abundance and community development. In Junk WJ, Da Silva CJ, Nunes da Cunha C, Wantzen KM, eds. The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Sofia, Moscow: Pensoft publishers, pp. 355–391. [Google Scholar]
  • Burić Z, Kiss KT, Ács E, Viličić D, Caput Mihalić K, Carić M. 2007. The occurrence and ecology of the centric diatom Cyclotella choctawhatcheeana Prasad in a Croatian estuary. Nova Hedwigia 84: 135–153. [CrossRef] [Google Scholar]
  • Cassie R. 1971. Sampling and statistics. A manual on methods for the assessment of secondary productivity in fresh waters. IBP (International Biological Programme) Handbook, Oxford, England: Blackwell Vol. 17, pp. 174–209. [Google Scholar]
  • Chaparro G, Fontanarrosa MS, O'Farrell I. 2016. Colonization and succession of zooplankton after a drought: influence of hydrology and free-floating plant dynamics in a floodplain lake. Wetlands 36: 85–100. [CrossRef] [Google Scholar]
  • Debastiani-Júnior JR, Nogueira MG. 2016. How water level management affects cladoceran assemblages in lakes lateral to a reservoir. Mar Freshw Res 67: 1853–1861. [CrossRef] [Google Scholar]
  • Del Ponti OD, Cabrera GC, Vignatti AM, Echaniz SA. 2015. Dynamics of the limnological parameters and zooplankton of La Brava, a shallow lake of the Atuel-Salado-Chadileuvú-Curacó Rivers system (La Pampa, Argentina). Appl Ecol Environ Sci 3: 193–199. [Google Scholar]
  • De los Ríos P. 2005. Richness and distribution of zooplanktonic crustacean species in Chilean Andes mountains and southern Patagonia shallow ponds. Pol J Environ Stud 14: 817–822. [Google Scholar]
  • Dolan JR, Coats DW. 1991. A study of feeding in predacious ciliates using prey ciliates labeled with fluorescent microspheres. J Plankton Res 13: 609–627. [CrossRef] [Google Scholar]
  • Downing JA, Prairie Y, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51: 2388–2397. [CrossRef] [Google Scholar]
  • Du J, Fang J, Xu W, Shi P. 2013. Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stoch Environ Res Risk Assess 27: 377–387. [CrossRef] [Google Scholar]
  • Dumont HJ, Van de Velde I, Dumont S. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97. [CrossRef] [PubMed] [Google Scholar]
  • Echaniz SA, Vignatti AM. 2011. Seasonal variation and influence of turbidity and salinity on the zooplankton of a saline lake in central Argentina. Lat Am J Aquat Res 39: 306–315. [CrossRef] [Google Scholar]
  • Echaniz SA, Vignatti S, José de Paggi SJ, Paggi JC, Pilati A. 2006. Zooplankton seasonal abundance of south American saline shallow lakes. Int Rev Hydrobiol 91: 86–100. [CrossRef] [Google Scholar]
  • Echaniz SA, Cabrera GC, Vignatti AM. 2015. Limnological parameters and population structure of Artemia persimilis Piccinelli and Prosdocimi, 1968 (Crustacea, Anostraca) in La Amarga, a Hypersaline Lake of La Pampa (Argentina). Res Zool 5: 25–31. [Google Scholar]
  • Evans JC, Prepas EE. 1997. Relative importance of iron and molybdenum in restricting phytoplankton biomass in high phosphorus saline lakes. Limnol Oceanogr 42: 461–472. [CrossRef] [Google Scholar]
  • Gafny S, Gasith A. 1999. Spatially and temporally sporadic appearance of macrophytes in the littoral zone of Lake Kinneret, Israel: taking advantage of a window of opportunity. Aquat Bot 62: 249–267. [CrossRef] [Google Scholar]
  • Gafny S, Gasith A, Goren M. 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. J Fish Biol 41: 863–871. [Google Scholar]
  • Gifford DJ. 1991. The Protozoan-Metazoan trophic link in pelagic ecosystems. J Protozool 38: 81–86. [CrossRef] [Google Scholar]
  • Gleick P. 2003. Global fresh water resources: soft-path solutions for the 21st century. Science 302: 1524–1528. [CrossRef] [PubMed] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Iglesias C, Mazzeo N, Meerhoff M, Lacerot G, Clemente JM, Scasso F, Kurk C, Goyenola G, Garcia-Alonso J, Amsinck SL, Paggi JC, Paggi SJ, Jeppesen E. 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147. [CrossRef] [Google Scholar]
  • IPCC. 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Switzerland: Geneva, 151 p. [Google Scholar]
  • Izaguirre I, Allende L, Marinone MC. 2003. Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J Plankton Res 25: 1079–1097. [CrossRef] [Google Scholar]
  • Izaguirre I, Allende L, Escaray R, Bustingorry J, Pérez G, Tell G. 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216. [CrossRef] [Google Scholar]
  • Izaguirre I, Sánchez ML, Schiaffino MR, O'Farrell I, Huber P, Ferrer N, Zunino J, Lagomarsino L, Mancini M. 2015. Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiologia 752: 47–64. [CrossRef] [Google Scholar]
  • Jeppesen E, Søndergaard M, Kanstrup E, Petersen B, Henriksen RB, Hammershøj M, Mortensen E, Jensen JP, Have A. 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275/276: 15–30. [CrossRef] [Google Scholar]
  • Jeppesen E, Nõges P, Davidson TA, Haberman J, Nõges T, Blank K, Johansson LS. 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297. [CrossRef] [Google Scholar]
  • Jeppesen E, Brucet Balmaña S, Naselli-Flores L, Papastergiadou E, Stefanidis K, NogesT, Bucak T. 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227. [CrossRef] [Google Scholar]
  • Jezbera J, Nedoma J, Šimek K. 2003. Longitudinal changes in protistan bacterivory and bacterial production in two canyon-shaped reservoirs of different trophic status. Hydrobiologia 504: 115–130. [CrossRef] [Google Scholar]
  • Klaveness D. 1988. Ecology of the Cryptomonadida: a first review. In: Sandgren CD, ed. Growth and reproductive strategies of freshwater phytoplankton. Cambridge: Cambridge University Press, pp. 105–133. [Google Scholar]
  • Kopprio GA, Kattner G, Freije RH, de Paggi SJ, Lara RJ. 2014. Seasonal baseline of nutrients and stable isotopes in a saline lake of Argentina: biogeochemical processes and river runoff effects. Environ Monit Assess 186: 3139–3148. [CrossRef] [PubMed] [Google Scholar]
  • Kozak A. 2009. Community structure and dynamics of phytoplankton in Lake Uzarzewskie. Teka Kom Ochr Kszt Środ Przyr − OL PAN 6: 146–152. [Google Scholar]
  • Laas A, Nõges P, Kõiv T, Nõges T. 2012. High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia 694: 57–74. [CrossRef] [Google Scholar]
  • Labraga J, Brandizi L, López M. 2011. Avances en el pronóstico climático de las anomalías de lluvia en la Región Pampeana. Meteorológica 36: 59–71. [Google Scholar]
  • Laird KR, Cumming BF. 2008. Reconstruction of Holocene lake level from diatoms, chrysophytes and organic matter in a drainage lake from the Experimental Lakes Area (northwestern Ontario, Canada). Quatern Res 69: 292–305. [CrossRef] [Google Scholar]
  • Larson CA, Belovsky GE. 2013. Salinity and nutrients influence species richness and evenness of phytoplankton communities in microcosm experiments from Great Salt Lake, Utah, USA. J Plankton Res 35: 1154–1166. [CrossRef] [Google Scholar]
  • Legendre P, Legendre L. 1998. Numerical ecology. Amsterdam: The Netherlands. [Google Scholar]
  • Leira M, Cantonati M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia 613: 171–184. [CrossRef] [Google Scholar]
  • Liu X, Qian K, Chen Y. 2015. Effects of water level fluctuations on phytoplankton in a Changjiang River floodplain lake (Poyang Lake): implications for dam operations. J Gt Lakes Res 41: 770–779. [CrossRef] [Google Scholar]
  • Marker AFH, Crowther CA, Gunn RJM. 1980. Methanol and acetone as solvents for estimating chlorophyll a and phaeopigments by spectrophotometry. Arch Hydrobiol Beih Ergebn Limnol 14: 52–69. [Google Scholar]
  • Mirza MMQ. 2003. Climate change and extreme weather events: can developing countries adapt? Clim Policy 3: 233–248. [Google Scholar]
  • Modenutti BE, Pérez GL. 2001. Planktonic ciliates from an oligotrophic south Andean lake, Morenito lake (Patagonia, Argentina). Braz J Biol 61: 389–395. [CrossRef] [Google Scholar]
  • Moos MT, Laird KR, Cumming BF. 2005. Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. J Paleolimnol 34: 217–227. [CrossRef] [Google Scholar]
  • Nedbalová L, Stuchlík E, Strunecký O. 2006. Phytoplankton of a mountain lake (L'adové pleso, the Tatra Mountains, Slovakia): seasonal development and first indications of a response to decreased acid deposition. Biologia 61: 91–100. [Google Scholar]
  • Pilati A, Castellino M, Bucher EH. 2016. Nutrient, chlorophyll and zooplankton seasonal variations on the southern coast of a subtropical saline lake (Mar Chiquita, Córdoba, Argentina). Ann Limnol: Int J Limnol 52: 263–271. [CrossRef] [EDP Sciences] [Google Scholar]
  • Quirós R, Drago E. 1999. The environmental state of Argentinean lakes: an overview. Lakes Reserv: Res Manag 4: 55–64. [CrossRef] [Google Scholar]
  • Rennella AM, Quirós R. 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556: 181–191. [CrossRef] [Google Scholar]
  • Schagerl M, Oduor SO. 2008. Phytoplankton community relationship to environmental variables in three Kenyan Rift Valley saline-alkaline lakes. Mar Freshw Res 59: 125–136. [CrossRef] [Google Scholar]
  • Scian B. 2000. Evidencias de la señal del SOI sobre la variabilidad de las lluvias en la Región Semiárida Pampeana. Meteorologica 35: 3–14. [Google Scholar]
  • Sparks RE, Nelson JC, Yin Y. 1998. Naturalization of the flood regime in regulated rivers. BioScience 48: 706–720. [CrossRef] [Google Scholar]
  • Staehr PA, Bade D, Van de Bogert MC, Koch GR, Williamson C, Hanson P, Kratz T. 2010. Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr Methods 8: 628–644. [CrossRef] [Google Scholar]
  • Starks E, Cooper R, Leavitt PR, Wissel B. 2014. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses. Glob Change Biol 20: 1032–1042. [CrossRef] [Google Scholar]
  • Stenger-Kovács C, Lengyel E, Buczkó K, Tóth MF, Crossetti OL. 2014. Vanishing world: alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4: 383–396. [CrossRef] [Google Scholar]
  • Sun J, Liu D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25: 1331–1346. [CrossRef] [Google Scholar]
  • Ter Braak CJ. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179. [CrossRef] [Google Scholar]
  • Utermöhl M. 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Limnol 9: 1–38. [Google Scholar]
  • Venrick EL. 1978. How many cells to count? In: Sournia A, ed. Phytoplankton manual. Paris: UNESCO, pp. 167–180. [Google Scholar]
  • Vignatti AM, Paggi JC, Cabrera GC, Echaniz SA. 2012a. Zooplankton diversity and its relationship with environmental changes after the filling of a temporary saline lake in the semi-arid region of La Pampa, Argentina. Lat Am J Aquat Res 40: 1005–1016. [CrossRef] [Google Scholar]
  • Vignatti A, Cabrera G, Echaniz S. 2012b. Changes in the zooplankton and limnological variables of a temporary hypo-mesosaline wetland of the central region of Argentina during its drying. Pan Am J Aquat Sci 7: 93–106. [Google Scholar]
  • Wolin JA, Stone JR. 2010. Diatoms as indicators of water-level change in freshwater lakes. In Stoermer EF, Smol JP, eds. The diatoms: applications for the environmental and earth sciences. UK: Cambridge University Press, pp. 183–202. [Google Scholar]
  • Zingel P, Nõges T. 2010. Seasonal and annual population dynamics of ciliates in a shallow eutrophic lake. Fundam Appl Limnol: Arch Hydrobiol 176: 133–143. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.