Free Access
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 271 - 280
Published online 04 September 2017
  • Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121–126. [CrossRef] [PubMed] [Google Scholar]
  • Ali B, Qian P, Sun R, Farooq MA, Gill RA, Wang J, Azam M, Zhou W. 2015. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant. Environ Sci Pollut Res 22(4): 3068–3081. [CrossRef] [MathSciNet] [Google Scholar]
  • Andrews J, Adams S, Burton K, Edmondson R. 2002. Partial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin. J Exp Bot 53(379): 2393–2399. [CrossRef] [PubMed] [Google Scholar]
  • Asada K. 1994. Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM, eds. Causes of photooxidative stress and amelioration of defense systems in plants. Boca Raton, FL, USA: CRC Press, pp. 77–104. [Google Scholar]
  • Atapaththu KSS, Asaeda T. 2015. Growth and stress responses of Nuttall's waterweed Elodea nuttallii (Planch) St. John to water movements. Hydrobiologia 747(1): 217–233. [Google Scholar]
  • Atwell B, Ismail A, Pedersen O, Shabala S, Sorrell B, Voesenek L. 2014. Waterlogging and submergence. In: Muns R., ed. Plants in Action, Australian Society of Plant Scientists. [Google Scholar]
  • Barko J, Gunnison D, Carpenter S. 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41(1–3): 41–65, doi:10.1016/0304-3770(91)90038-7. [Google Scholar]
  • Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2): 179–194. [CrossRef] [PubMed] [Google Scholar]
  • Cervilla LM, Blasco B, Ríos JJ, Romero L, Ruiz JM. 2007. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100(4): 747–756. [CrossRef] [PubMed] [Google Scholar]
  • Chang X, Wu C, Zhao J. Advance of allelopathic inhibitory effects of aquatic macrophytes on algae and its application. In: Advance in ecological science, vol. 3. Beijing: Higher Education Press, 2007, pp. 47–174. [Google Scholar]
  • Charlatchka R, Cambier P. 2000. Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118(1–2): 143–168. [Google Scholar]
  • Cline JD. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14(3): 454–458. [Google Scholar]
  • Collins BS, Sharitz RR, Coughlin DP. 2005. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands. Bioresour Technol 96(8): 937–948. [CrossRef] [PubMed] [Google Scholar]
  • DeEll JR, Toivonen PM. 2003. Practical applications of chlorophyll fluorescence in plant biology. New York: Springer. [CrossRef] [Google Scholar]
  • Dominguez MT, Maranon T, Murillo JM, Schulin R, Robinson BH. 2008. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152: 50–59. [CrossRef] [PubMed] [Google Scholar]
  • Ellawala C, Asaeda T, Kawamura K. 2011. Influence of flow turbulence on growth and indole acetic acid and H2O2 metabolism of three aquatic macrophyte species. Aquat Ecol 45(3): 417–426. [Google Scholar]
  • Goel A, Goel AK, Sheoran IS. 2003. Changes in oxidative stress enzymes during artificial ageing in cotton (Gossypium hirsutum L.) seeds. J Plant Physiol 160(9): 1093–1100. [CrossRef] [PubMed] [Google Scholar]
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1): 192. [CrossRef] [PubMed] [Google Scholar]
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347 (2nd ed.). [Google Scholar]
  • Hou Z, Wang L, Liu J, Hou L, Liu X. 2013. Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Plant Biol 55(3): 277–289. [CrossRef] [PubMed] [Google Scholar]
  • Hu L-Y, Hu S-L, Wu J, Li Y-H, Zheng J-L, Wei Z-J, Liu J, Wang H-L, Liu Y-S, Zhang H. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. J Agric Food Chem 60(35): 8684–8693. [CrossRef] [PubMed] [Google Scholar]
  • Immers AK, Vendrig K, Ibelings BW, Van Donk E, Ter Heerdt GN, Geurts JJ, Bakker ES. 2014. Iron addition as a measure to restore water quality: implications for macrophyte growth. Aquat Bot 116: 44–52. [CrossRef] [Google Scholar]
  • John MK. 1970. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci 109(4): 214–220. [CrossRef] [Google Scholar]
  • Khan FA, Naushin F, Rehman F, Masoodi A, Irfan M, Hashmi F, Ansari AA. 2014. Eutrophication: global scenario and local threat to dynamics of aquatic ecosystems. In: Ansari AA, Gill SS, eds. Eutrophication: Causes, Consequences and Control. Netherlands: Springer, pp. 17–27. [CrossRef] [Google Scholar]
  • Kinsman-Costello LE, O'Brien JM, Hamilton SK. 2015. Natural stressors in uncontaminated sediments of shallow freshwaters: the prevalence of sulfide, ammonia, and reduced iron. Environ Toxicol Chem 34(3): 467–479. [CrossRef] [PubMed] [Google Scholar]
  • Kovtun Y, Chiu W-L, Tena G, Sheen J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97(6): 2940–2945. [CrossRef] [Google Scholar]
  • Marin A, Masscheleyn P, Patrick Jr W. 1993. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152(2): 245–253. [CrossRef] [Google Scholar]
  • Martínez Domínguez D, Córdoba García F, Canalejo Raya A, Torronteras Santiago R. 2010. Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol Plant 139(3): 289–302. [PubMed] [Google Scholar]
  • McGinnis DF, Lorke A, Wüest A, Stöckli A, Little J. 2004. Interaction between a bubble plume and the near field in a stratified lake. Water Resour Res 40(W10206). [CrossRef] [Google Scholar]
  • Miao S, DeLaune R, Jugsujinda A. 2006. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci Total Environ 371(1): 334–343. [CrossRef] [PubMed] [Google Scholar]
  • Mortimer CH. 1941. The exchange of dissolved substances between mud and water in lakes. J Ecol 29(2): 280–329. [CrossRef] [Google Scholar]
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5): 867–880. [Google Scholar]
  • Napoli AM, Mason-Plunkett J, Valente J, Sucov A. 2006. Full recovery of two simultaneous cases of hydrogen sulfide toxicity. Hosp Physician 42(5): 47. [Google Scholar]
  • Noctor G, Foyer CH. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49(1): 249–279, doi:10.1146/annurev.arplant.49.1.249. [Google Scholar]
  • Parveen M, Asaeda T, Rashid MH. 2017. Hydrogen sulfide induced growth, photosynthesis and biochemical responses in three submerged macrophytes. Flora 230: 1–11, doi:10.1016/j.flora.2017.03.005. [CrossRef] [Google Scholar]
  • Pasternak T, Potters G, Caubergs R, Jansen MA. 2005. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56(418): 1991–2001. [CrossRef] [PubMed] [Google Scholar]
  • Patrick WH, Gambrell RP, Faulkner SP. Redox measurements of soils. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, eds. Methods of soil analysis, part 3: chemical methods. Madison, WI, USA: Soil Science Society of America, Inc., 1996, pp. 1255–1274. [Google Scholar]
  • Pearsall W, Mortimer C. 1939. Oxidation–reduction potentials in waterlogged soils, natural waters and muds. J Ecol 27(2): 483–501. [CrossRef] [Google Scholar]
  • Perrow MR, Meijer M-L, Dawidowicz P, Coops H. 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342: 355–365. [CrossRef] [Google Scholar]
  • Pezeshki S. 2001. Wetland plant responses to soil flooding. Environ Exp Bot 46(3): 299–312. [CrossRef] [Google Scholar]
  • Pezeshki S, DeLaune R. 2012. Soil oxidation–reduction in wetlands and its impact on plant functioning. Biology 1(2): 196–221. [CrossRef] [PubMed] [Google Scholar]
  • Ponnamperuma F. 1972. The chemistry of submerged soils, vol 24. NY and London: Academic Press. [Google Scholar]
  • Ponnamperuma F. 1984. Effects of flooding on soils. In: Kozlowski TT, ed. Flood plant growth. New York: Academic Press, pp. 9–45. [CrossRef] [Google Scholar]
  • Porra R, Thompson W, Kriedemann P. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics 975(3): 384–394. [CrossRef] [Google Scholar]
  • Rashid MH, Asaeda T, Uddin MN. 2010. Litter-mediated allelopathic effects of kudzu (Pueraria montana) on Bidens pilosa and Lolium perenne and its persistence in soil. Weed Biol Manag 10(1): 48–56. [CrossRef] [Google Scholar]
  • Scheffer M. 1998. Ecology of shallow lakes. Population and community biology series, vol. 22. London: Chapman Hall. [Google Scholar]
  • Terrados J, Duarte CM, Kamp-Nielsen L, Agawin N, Gacia E, Lacap D, Fortes M, Borum J, Lubanski M, Greve T. 1999. Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat Bot 65(1): 175–197. [CrossRef] [Google Scholar]
  • van Donk E, van de Bund WJ. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72(3): 261–274. [CrossRef] [Google Scholar]
  • Vardanyan L, Schmieder K, Sayadyan H, Heege T, Heblinski J, Agyemang T, De J, Breuer J. 2008. Heavy metal accumulation by certain aquatic macrophytes from lake Sevan (Armenia). In: Proceedings of Taal2007: The World Lake Conference, pp. 1028–1038. [EDP Sciences] [Google Scholar]
  • Walky A, Black I. 1934. An examination of the Degtiareff method for deteming soil organic matter and proposed modification of the chromic acid titration method. Soil Sci 63: 29–38. [Google Scholar]
  • Wang C, Zhang SH, Wang PF, Hou J, Li W, Zhang WJ. 2008. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquat Toxicol 87(2): 88–98. [CrossRef] [PubMed] [Google Scholar]
  • Wu J, Cheng S, Liang W, He F, Wu Z. 2009. Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus. Hydrobiologia 628(1): 111–119. [CrossRef] [Google Scholar]
  • Wu J, Dai Y, Rui S, Cui N, Zhong F, Cheng S. 2015. Acclimation of Hydrilla verticillata to sediment anoxia in vegetation restoration in eutrophic waters. Ecotoxicology 24(10): 2181–2189. [CrossRef] [PubMed] [Google Scholar]
  • Yu K, Böhme F, Rinklebe J, Neue H-U, DeLaune RD. 2007. Major biogeochemical processes in soils – a microcosm incubation from reducing to oxidizing conditions. Soil Sci Soc Am J 71(4): 1406–1417. [CrossRef] [MathSciNet] [Google Scholar]
  • Zaman T, Asaeda T. 2013. Effects of NH4-N concentrations and gradient redox level on growth and allied biochemical parameters of Elodea nuttallii (Planch.). Flora 208(3): 211–219. [CrossRef] [Google Scholar]
  • Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D. 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1): 44–50, doi:10.1016/j.chemosphere.2006.10.007. [CrossRef] [PubMed] [Google Scholar]
  • Zhang H, Jiao H, Jiang C-X, Wang S-H, Wei Z-J, Luo J-P, Jones RL. 2010. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 32(5): 849–857. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.