Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 53, 2017
Page(s) 189 - 201
DOI https://doi.org/10.1051/limn/2017003
Published online 27 March 2017
  • Adámek Z. and Obrdlík P., 1977. Food of important cyprinid species in the warmed barb-zone of the Oslava River. Folia Zool., 26, 171–182. [Google Scholar]
  • Batty L.C., Atkin L. and Manning D.A.C., 2005. Assessment of the ecological potential of mine-water treatment wetland using a baseline survey of macroinvertebrate communities. Environ. Pollut., 138, 412–419. [CrossRef] [PubMed] [Google Scholar]
  • Brock T., 1970. High temperature systems. Annu. Rev. Ecol. Syst., 1, 191–220. [CrossRef] [Google Scholar]
  • CEN/TC 230N0540, 2009. Water quality. Guidance standard for the surveying, sampling and laboratory analysis of phytobenthos in shallow running water. [Google Scholar]
  • Coimbra C.N., Graça M.A.S. and Cortes R.M., 1996. The effect of a basic effluent on macroinvertebrate community structure in a temporary mediterranean river. Environ. Pollut., 94, 301–307. [CrossRef] [PubMed] [Google Scholar]
  • Cummins K.W. and Klug M.J., 1979. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst., 10, 147–172. [CrossRef] [Google Scholar]
  • Descy J.P. and Mouvet C., 1984. Impact of the Tihange nuclear powerplant on the epilithon and the phytoplancton of the Meuse River (Belgium). Hydrobiologia, 119, 119–128. [CrossRef] [Google Scholar]
  • Directive 2008/105/EC of European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC”, OJ L348, pp. 84–97, 24.12.2008. [Google Scholar]
  • Dumnicka E. and Galas J., 2006. Distribution of benthic fauna in relation to environmental conditions in an inundated opencast sulphur mine (Piaseczno reservoir, Southern Poland). Aquat. Ecol., 40, 203–210. [CrossRef] [Google Scholar]
  • Eloranta P.V., 1982. Epilithon growth and diatom community structure in a cooling water pond. Hydrobiologia, 96, 253–265. [CrossRef] [Google Scholar]
  • Friberg N., Dybkjær J.B., Olafsson J., Gislason G.M., Larsen S.E. and Laurisden T.L., 2009. Relationships between structure and function in streams contrasting in temperature. Freshw. Biol., 54, 2051–2068. [CrossRef] [Google Scholar]
  • Fu L., Jiang Y., Ding J., Liu Q., Peng Q.Z. and Kang M.Y., 2015. Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. J. Freshw. Ecol., 31, 21–35. [CrossRef] [Google Scholar]
  • Haidekker A. and Hering D. 2008. Relationship between benthic insect (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquat. Ecol., 42, 463–481. [CrossRef] [Google Scholar]
  • Hamsher S.E., Verb R.G. and Vis M.L., 2004. Analysis of acid mine drainage impacted streams using a periphyton index. J. Freshw. Ecol., 19, 313–324. [CrossRef] [Google Scholar]
  • Hawkes H.A., 1979. Invertebrates as indicators of river water quality. In: James A. and Evison L. (eds.), Biological Indicators of Water Quality, Wiley, UK, 420 p. [Google Scholar]
  • Hickman M., 1974. Effects of discharge of thermal effluent from a power station on Lake Wabamun, Alberta, Canada – The epipelic and epipsammic algal communities. Hydrobiologia, 45, 199–215. [CrossRef] [Google Scholar]
  • Hogg I.D. and Williams D.D., 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology, 77, 395–407. [CrossRef] [Google Scholar]
  • Hojsgaard S., Halekoh U. and Yan J. 2006. The R Package geepack for Generalized Estimating equations. J. Stat. Soft., 15, 1–11. [Google Scholar]
  • Hudcová H., Badurová J., Rozkošný M., Funková R., Svobodová, J. and Sova J. 2012. Ovlivnění jakosti vod a sedimentů v povodí řeky Nedvědičky těžbou a zpracováním uranových rud (Uranium ore mining and processing influence on water and sediment quality in the Nedvědička River). VTEI Vodohospodářské Technicko-ekonomické Informace, 54, 5–10. [Google Scholar]
  • Hynes H.B.N., 1970. The Ecology of Running Waters, Liverpool University Press, Liverpool, 555 p. [Google Scholar]
  • Kratina P., Greig H.S., Thompson P.L., Ticiana S.A., Carvalho-Pereira T.S.A. and Shurin J.B., 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology, 33, 1421–1430. [CrossRef] [Google Scholar]
  • Kruskal J.B., 1964. Multidimensional scaling by optimizing goodness of t to a nonmetric hypothesis. Psychometrika, 29, 1–27. [Google Scholar]
  • Lakly M.B. and McArthur J.V., 2000. Macroinvertebrate recovery of a post-thermal stream: habitat structure and biotic function. Ecol. Eng., 15, 87–100. [CrossRef] [Google Scholar]
  • Lamberti G.A. and Resh V.H., 1983. Geothermal effects on stream benthos: separate influences of thermal and chemical components on epilithon and macroinvertebrates. Can. J. Fish. Aquat. Sci., 40, 1995–2009. [CrossRef] [Google Scholar]
  • Lamberti G.A. and Resh V.H., 1985. Distribution of benthic algae and macroinvertebrates along a thermal stream gradient. Hydrobiologia, 128, 13–21. [CrossRef] [Google Scholar]
  • Ledger M.E. and Hildrew A.G., 2005. The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a pH gradient in streams. Environ. Pollut., 137, 103–118. [CrossRef] [PubMed] [Google Scholar]
  • Leukart P. and Hanelt D., 1995. Light requirements for photosynthesis and growth in several macroalga from a small softwater stream in the Spessart mountains, Germany. Phycologia, 34, 528–532. [CrossRef] [Google Scholar]
  • Merovich G.T. and Petty J.T., 2007. Interactive effects of multiple stressors and restoration priorities in a mined Appalachian watershed. Hydrobiologia, 575, 13–31. [CrossRef] [Google Scholar]
  • Moog O., 1995. Fauna Aquatica Austriaca, Lieferung. Version 1995. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien. [Google Scholar]
  • Nedeau J.E., Merritt R.W. and Kaufman M.G., 2003. The effect of an industrial effluent on an urban stream benthic community: water quality vs. habitat quality. Environ. Pollut., 123, 1–13. [CrossRef] [PubMed] [Google Scholar]
  • Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. and Wagner H., 2011. Vegan: Community Ecology Package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan. [Google Scholar]
  • Patrick R., 1969. Some effects of temperature on freshwater algae. In: Krendel P.A. and Parker F.L. (eds.), Biological Aspects of Thermal Pollution, Vanderbilt Univ Press, Knoxville, TN. [Google Scholar]
  • Patrick R, 1971. Effects of increasing light and temperature on structure of diatom communities. Limnol. Oceanogr., 16, 405–421. [CrossRef] [Google Scholar]
  • Petrin Z., Englund G. and Malmqvist B., 2008. Contrasting effects of anthropogenic and natural acidity in streams: a meta-analysis. Proc. R. Soc. B, 275, 1143–1148. [CrossRef] [Google Scholar]
  • Piggott J.J., Salis R.K., Lear G., Townsend C.R. and Matthaei C.D., 2014. Climate warming and agricultural stressors interact to determine stream periphyton community composition. Glob. Change Biol., 21, 206–222. [CrossRef] [Google Scholar]
  • Poff N.L. and Matthews R.A., 1986. Benthic macroinvertebrate community structural and functional group response to thermal enhancement in the Savannah River and a Coastal Plain tributary. Arch. Hydrobiol., 106, 119–137. [Google Scholar]
  • Pond G.J., Passmore M.E., Borsuk F.A., Reynolds L. and Rose C.J., 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J. North Am. Benthol. Soc., 27, 717–737. [CrossRef] [Google Scholar]
  • Quinn J.M. and Hickey C.W., 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. New Zeal. J. Mar. Fresh., 24, 387–409. [Google Scholar]
  • Quinn J.M., Steele G.L., Hickey C.W. and Vickers M.L., 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. New Zeal. J. Mar. Fresh., 28, 391–397. [CrossRef] [Google Scholar]
  • R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, Available online at: http://www.R-project.org. [Google Scholar]
  • Richards D.C., Cazier L.D. and Lester G.T., 2001. Spatial distribution of three snail species, including the invader Potamopyrgus antipodarum, in a freshwater spring. West. North Am. Nat., 61, 375–380. [Google Scholar]
  • Růžičková S., Schenková J., Weissová V. and Helešic J., 2014. Environmental impact of heated mining waters on clitellate (Annelida: Clitellata) assemblages. Biologia 69, 1179–1189. [Google Scholar]
  • Samways K.M., Quiñones-Rivera Z.S., Leavitt P.R. and Cunjak R.A., 2015. Spatiotemporal responses of algal, fungal, and bacterial biofilm communities in Atlantic rivers receiving marine-derived nutrient inputs. Freshw. Sci., 34, 881–896. [CrossRef] [Google Scholar]
  • Sheath R.G., 1984. The biology of fresh water red algae. Prog. Phycol. Res. Jour., 3, 89–157. [Google Scholar]
  • Squires L.E., Rushforth S.R. and Brotherson J.D., 1979. Algal response to a thermal effluent: study of a power station on the Provo River, Utah, USA. Hydrobiologia, 63, 17–32. [CrossRef] [Google Scholar]
  • Steinman A.D., 1996. Effect of grazers on freshwater benthic algae. In: Stevenson R.J., Bothwell M.I. and Lowe R.L. (eds.), Algal Ecology: Freshwater Benthic Ecosystems, Academic Press, San Diego, 341–373. [Google Scholar]
  • Talmage S.S. and Coutant C.C., 1979. Thermal effects. J. Water Pollut. Control Fed., 51, 1517–1554. [Google Scholar]
  • Taylor B.R. and Dykstra A.N., 2005. Effects of hot ground water on a small swamp-stream in Nova Scotia, Canada. Hydrobiologia, 545, 129–144. [CrossRef] [Google Scholar]
  • Timpano A.J., Schoenholtz S.H., Soucek D.J. and Zipper C.E., 2015. Salinity as a limiting factor for biological condition in mining influenced central appalachian headwater streams. J. Am. Water Res. Assoc., 51, 240–250. [CrossRef] [Google Scholar]
  • Vinson D.K. and Rushforth S.R., 1989. Diatom species composition along a thermal gradient in the Portneuf River Idaho, USA. Hydrobiologia, 185, 41–54. [CrossRef] [Google Scholar]
  • Voelz N.J., Poff N.L. and Ward J.V., 1994. Differential effect of a brief thermal disturbance on Caddisflies (Trichoptera) in a regulated river. Am. Midl. Nat., 132, 173–182. [CrossRef] [Google Scholar]
  • Wellborn G.A. and Robinson J.V., 1996. Effects of a thermal effluent on macroinvertebrates in a Central Texas Reservoir. Am. Mid. Nat., 136, 110–120. [CrossRef] [Google Scholar]
  • Wilkerson E., Hagan J.M. and Whitman A.A., 2010. The effectiveness of different buffer widths for protecting water quality and macroinvertebrate and periphyton assemblages of headwater streams in Maine, USA. Can. J. Fish. Aquat. Sci., 67, 177–190. [CrossRef] [Google Scholar]
  • Worthington T.A., Shaw P.J., Daffern J.R. and Langford T.E.L., 2015. The effect of thermal discharge on the macroinvertebrate community of a large British river: implications for climate change. Hydrobiologia, 753, 81–95. [CrossRef] [Google Scholar]
  • Živić I., Marković Z. and Brajković M., 2006. Influence of the temperature regime on the composition of the macrozoobenthos community in a thermal brook in Serbia. Biologia, Bratislava, 61, 179–191. [Google Scholar]
  • Živić I., Živić M., Milošević D., Bjelanović K., Stanojlović S., Daljević R. and Marković Z., 2013. The effects of geothermal water inflow on longitudinal changes in benthic macroinvertebrate community composition of a temperate stream. J. Ther. Biol., 38, 255–263. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.