Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 387 - 399
DOI https://doi.org/10.1051/limn/2016026
Published online 11 November 2016
  • Adams M., Raadik T., Burridge C. and Georges A., 2014. Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Syst. Biol, 63, 518–533. [CrossRef] [PubMed] [Google Scholar]
  • Albrecht C., Trajanovski S., Kuhn K., Streit B. and Wilke T., 2006. Rapid evolution of an ancient lake species flock: freshwater limpets (Gastropoda: Ancylidae) in the Balkan Lake Ohrid. Org. Divers Evol., 6, 294–307. [CrossRef] [Google Scholar]
  • Amato A., Kooistra W., Ghiron J., Mann D., Pröschold T. and Montresor M., 2007. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist, 158, 193–207. [CrossRef] [PubMed] [Google Scholar]
  • Bálint M., Domisch S., Engelhardt C., Haase P., Lehrian S., Sauer J., Theissinger K., Pauls S. and Nowak C., 2011. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change, 1, 313–318. [CrossRef] [Google Scholar]
  • Boag D., 1986. Dispersal in pond snails: potential role of waterfowl. Can. J. Zool., 64, 904–909. [CrossRef] [Google Scholar]
  • Bonin A., Taberlet P., Miaud C. and Pompanon F., 2006. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol. Biol. Evol. 23, 773–783. [CrossRef] [PubMed] [Google Scholar]
  • Boubli J. and De L., 2009. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in Northwestern Amazonia via a maximum entropy algorithm. Int. J. Primatol., 30, 217–228. [CrossRef] [Google Scholar]
  • Carter J. and Resh V., 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J. N. Am. Benthol. Soc., 20, 658–682. [CrossRef] [Google Scholar]
  • Cauvy-Fraunié S., Espinosa R., Andino P., Jacobsen D. and Dangles O., 2015. Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS ONE, 10, e0136793. [CrossRef] [PubMed] [Google Scholar]
  • Clement M., Posada D. and Crandall K., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol., 9, 1657–1659. [CrossRef] [PubMed] [Google Scholar]
  • Cordellier M. and Pfenninger M., 2008. Climate-driven range dynamics of the freshwater limpet, Ancylus fluviatilis (Pulmonata, Basommatophora). J. Biogeogr., 35, 1580–1592. [CrossRef] [Google Scholar]
  • Darriba D., Taboada G., Doallo R. and Posada D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods, 9, 772. [CrossRef] [Google Scholar]
  • Dodson R. and Marks D., 1997. Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim. Res., 8, 1–20. [CrossRef] [Google Scholar]
  • Drummond A., Suchard M., Xie D. and Rambaut A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol., 29, 1969–1973. [CrossRef] [PubMed] [Google Scholar]
  • Dussex N., Chuah A. and Waters J., 2016. Genome-wide SNPs reveal fine-scale differentiation among wingless alpine stonefly populations and introgression between winged and wingless forms. Evolution, 70, 38–47. [CrossRef] [PubMed] [Google Scholar]
  • Excoffier L. and Lischer H., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10, 564–567. [CrossRef] [PubMed] [Google Scholar]
  • Excoffier L., Laval G. and Schneider S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online, 1, 47–50. [Google Scholar]
  • Ezard T., Fujisawa T. and Barraclough T., 2009. SPLITS: species' limits by threshold statistics. R Package Version 1. [Google Scholar]
  • Figuerola J. and Green A., 2002. Dispersal of aquatic organisms by waterbirds a review of past research and priorities for future studies. Freshw. Biol., 47, 483–494. [CrossRef] [Google Scholar]
  • Finn D. and Poff L., 2005. Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshw. Biol., 50, 243–261. [CrossRef] [Google Scholar]
  • Fišer Z., Altermatt F., Zakšek V., Knapič T. and Fišer C., 2015. Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four niphargus species. PLoS ONE, 10, e0134384. [CrossRef] [PubMed] [Google Scholar]
  • Folmer O., Black M., Hoeh W., Lutz R. and Vrijenhoek R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol., 3, 294–299. [PubMed] [Google Scholar]
  • Guillot G., Mortier F. and Estoup A., 2005. Geneland: a computer package for landscape genetics. Mol. Ecol. Notes, 5, 712–715. [CrossRef] [Google Scholar]
  • Haase P., Lohse S., Pauls S., Schindehütte K., Sundermann A., Rolauffs P. and Hering D., 2004. Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macroinvertebrate sampling and sorting. Limnol.-Ecol. Manag. Inland Waters, 34, 349–365. [CrossRef] [Google Scholar]
  • Hampe A. and Jump A., 2011. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. Syst., 42, 313–333. [CrossRef] [Google Scholar]
  • Haun T., Salinger M., Pachzelt A. and Pfenninger M., 2012. On the processes shaping small-scale population structure in Radix balthica (Linnaeus 1758). Malacologia, 55, 219–233. [CrossRef] [Google Scholar]
  • Hijmans R., Cameron S., Parra J., Jones P. and Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25, 1965–1978. [CrossRef] [Google Scholar]
  • Hubendick B., 1970. Studies on Ancylidae: The palearctic and oriental species and form groups. Acta R. Soc. Scient. Litt. Gothoburg, 5, 1–52. [Google Scholar]
  • Jump A., Hunt J. and Penuelas J., 2007. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain. Ecoscience, 14, 507–518. [CrossRef] [Google Scholar]
  • Kappes H. and Haase P., 2012. Slow, but steady: dispersal of freshwater molluscs. Aquat. Sci., 74, 1. [CrossRef] [Google Scholar]
  • Katoh K. and Standley D., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 30, 772–780. [CrossRef] [PubMed] [Google Scholar]
  • Katouzian A., Sari A., Macher J., Weiss M., Saboori A., Leese F. and Weigand A., 2016. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep., 6, 22507. [CrossRef] [PubMed] [Google Scholar]
  • Keller I., Alexander J., Holderegger R. and Edwards P., 2013. Widespread phenotypic and genetic divergence along altitudinal gradients in animals. J. Evol. Biol., 26, 2527–2543. [CrossRef] [PubMed] [Google Scholar]
  • Kimura M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120. [CrossRef] [PubMed] [Google Scholar]
  • Lagrue C., Wattier R., Galipaud M., Gauthey Z., Rullmann J., Dubreuil C., Rigaud T. and Bollache L., 2014. Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes. Freshw. Biol., 59, 2555–2570. [CrossRef] [Google Scholar]
  • Leigh J. and Bryant D., 2015. Popart: full-feature software for haplotype network construction. Methods Ecol. Evol., 6, 1110–1116. [CrossRef] [Google Scholar]
  • Liebherr J., 1986. Comparison of genetic variation in two carabid beetles (Coleoptera) of differing vagility. Ann. Entomol. Soc. Am., 79, 424–433. [CrossRef] [Google Scholar]
  • Macher J., Salis R., Blakemore K., Tollrian R., Matthaei C. and Leese F., 2016. Multiple-stressor effects on stream invertebrates: DNA barcoding reveals contrasting responses of cryptic mayfly species. Ecol. Indic., 61, 159–169. [CrossRef] [Google Scholar]
  • Mamos T., Wattier R., Burzyński A. and Grabowski M., 2016. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol., 25, 795–810. [CrossRef] [PubMed] [Google Scholar]
  • McCulloch G., Wallis G. and Waters J., 2009. Do insects lose flight before they lose their wings? Population genetic structure in subalpine stoneflies. Mol. Ecol., 18, 4073–4087. [CrossRef] [PubMed] [Google Scholar]
  • Monaghan M., Robinson C., Spaak P. and Ward J., 2005. Macroinvertebrate diversity in fragmented Alpine streams: implications for freshwater conservation. Aquat. Sci., 67, 454–464. [CrossRef] [Google Scholar]
  • Múrria C., Morante M., Rieradevall A., Ribera A. and Prat N., 2014. Genetic diversity and species richness patterns in Baetidae (Ephemeroptera) in the Montseny Mountain range (North-East Iberian Peninsula). Limnetica, 33, 313–326. [Google Scholar]
  • Ortells R., Gómez A. and Serra M., 2003. Coexistence of cryptic rotifer species: ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol., 48, 2194–2202. [CrossRef] [Google Scholar]
  • Pauls S., Theissinger K., Ujvarosi L., Balint M. and Haase P., 2009. Patterns of population structure in two closely related, partially sympatric caddisflies in Eastern Europe: historic introgression, limited dispersal, and cryptic diversity 1. J. N. Am. Benthol. Soc., 28, 517–536. [CrossRef] [Google Scholar]
  • Pauls S., Blahnik R., Zhou X., Wardwell C. and Holzenthal R., 2010. DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). J. N. Am. Benthol. Soc., 29, 1058–1074. [CrossRef] [Google Scholar]
  • Pauls S., Nowak C., Bálint M. and Pfenninger M., 2013. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol., 22, 925–946. [CrossRef] [PubMed] [Google Scholar]
  • Pearson R., Raxworthy C., Nakamura M. and Townsend P., 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr., 34, 102–117. [CrossRef] [Google Scholar]
  • Peñuelas J. and Boada M., 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol., 9, 131–140. [CrossRef] [Google Scholar]
  • Pfenninger M. and Schwenk K., 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol., 7, 121. [CrossRef] [PubMed] [Google Scholar]
  • Pfenninger M., Staubach S., Albrecht C., Streit B. and Schwenk K., 2003. Ecological and morphological differentiation among cryptic evolutionary lineages in freshwater limpets of the nominal form-group Ancylus fluviatilis (O.F. Müller, 1774). Mol. Ecol., 12, 2731–2745. [CrossRef] [PubMed] [Google Scholar]
  • Phillips S. and Dudík M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175. [CrossRef] [Google Scholar]
  • Pons J., Barraclough T., Gomez-Zurita J., Cardoso A., Duran D., Hazell S., Kamoun S., Sumlin W. and Vogler A., 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol., 55, 595–609. [CrossRef] [PubMed] [Google Scholar]
  • Puillandre N., Lambert A., Brouillet S. and Achaz G., 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol., 21, 1864–1877. [CrossRef] [PubMed] [Google Scholar]
  • Rambaut A. and Drummond A., 2013. TreeAnnotator v1. 7.0. [Google Scholar]
  • Rambaut A., Suchard M., Xie D. and Drummond A., 2013. Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer. [Google Scholar]
  • Ratnasingham S. and Hebert P., 2007. BOLD: the Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes, 7, 355–364. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. [Google Scholar]
  • Rees W., 1965. The aerial dispersal of Mollusca. J. Molluscan Stud., 36, 269–282. [Google Scholar]
  • Rissler L. and Apodaca J., 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst. Biol., 56, 924–942. [CrossRef] [PubMed] [Google Scholar]
  • Segerstråle S., 1954. The Freshwater Amphipods, Gammarus Pulex (L.) and Gammarus Lacustris GO Sars, in Denmark and Fennoscandia – a Contribution to the Late – and Postglacial Immigration History of the Aquatic Fauna of Northern Europe. Soc. Si. Fenn. Comm. Biol., 15, 1–91. [Google Scholar]
  • Stark J.D., 2001. Protocols for Sampling Macroinvertebrates in Wadeable Streams, Cawthron Institute, New Zealand. [Google Scholar]
  • Steffen W., Richardson K., Rockström J., Cornell S., Fetzer I., Bennett E., Biggs R., Carpenter S., de Vries W. and de Wit C., 2015. Planetary boundaries: guiding human development on a changing planet. Science, 347, 1259855. [CrossRef] [PubMed] [Google Scholar]
  • Sunnucks P. and Hales D., 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol., 13, 510–524. [CrossRef] [PubMed] [Google Scholar]
  • Thuiller W., Vayreda J., Pino J., Sabate S., Lavorel S. and Gracia C., 2003. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr., 12, 313–325. [CrossRef] [Google Scholar]
  • Van Leeuwen C., Velde G., Groenendael J. and Klaassen M., 2012. Gut travellers: internal dispersal of aquatic organisms by waterfowl. J. Biogeogr., 39, 2031–2040. [CrossRef] [Google Scholar]
  • Villesen P., 2007. FaBox: an online toolbox for fasta sequences. Mol. Ecol. Notes, 7, 965–968. [CrossRef] [Google Scholar]
  • Vörösmarty C., McIntyre P., Gessner M., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S., Sullivan C., Reidy Liermann C. and Davies P., 2010. Global threats to human water security and river biodiversity. Nature, 467, 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Warren D., Glor R. and Turelli M., 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611. [CrossRef] [Google Scholar]
  • Watanabe K., Kazama S., Omura T. and Monaghan M., 2014. Adaptive genetic divergence along narrow environmental gradients in four stream insects. PLoS ONE, 9, e93055. [CrossRef] [PubMed] [Google Scholar]
  • Weigand A., Jochum A., Pfenninger MM, Steinke D. and Klussmann-Kolb A., 2011. A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Mol. Ecol. Resour., 11, 255–265. [CrossRef] [PubMed] [Google Scholar]
  • Weiss M. and Leese F., 2016. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol., doi: 10.1186/s12862-016-0723-z. [Google Scholar]
  • Weiss M., Macher J., Seefeldt M. and Leese F., 2014. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia, 721, 165–184. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.