Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 317 - 325
Published online 15 September 2016
  • Alonso M., 1996. Crustacea Branchiopoda. Fauna Iberica – Volume 7, Museo Nacional de Ciencias Naturales y Consejo Superior de Investigaciones Cientificas, Madrid, Spain. [Google Scholar]
  • Antunes S.C., Castro B.B. and Gonçalves F., 2003. Chronic responses of different clones of Daphnia longispina (field and ephippia) to different food levels. Acta Oecol., 24, S325–S332. [CrossRef] [Google Scholar]
  • Antunes S.C., Castro B.B. and Gonçalves F., 2004. Effect of food level on the acute and chronic responses of daphnids to lindane. Environ. Pollut., 127, 367–375. [CrossRef] [PubMed] [Google Scholar]
  • Antunes S.C., Pereira R. and Gonçalves F., 2007a. Acute and chronic toxicity of effluent water from an abandoned uranium mine. Arch. Environ. Contam. Toxicol., 53, 207–213. [CrossRef] [Google Scholar]
  • Antunes S.C., Figueiredo D.R., Marques S.M., Castro B.B., Pereira R. and Gonçalves F., 2007b. Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Sci. Total Environ., 374, 252–259. [CrossRef] [Google Scholar]
  • ASTM, 1980. Standard Practice for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates and Amphibians, Report E 729-80, American Society for Testing and Materials, Philadelphia, USA. [Google Scholar]
  • ASTM, 1997. Standard Guide for Conducting Daphnia Magna Life-cycle Toxicity Tests, Report E 1193-97, American Society for Testing and Materials, Philadelphia, USA. [Google Scholar]
  • Baird D.J., Barber I., Bradley M., Calow P. and Soares A.M.V.M., 1989a. The Daphnia bioassay, a critique. Hydrobiologia, 188/189, 403–406. [CrossRef] [Google Scholar]
  • Baird D.J., Soares A.M.V.M., Girling A., Barber I., Bradley M.C. and Calow P., 1989b. The long-term maintenance of Daphnia magna Straus for use in ecotoxicity tests: problems and prospects. In: Lokke H., Tyle H. and Bro-Rasmussen F. (eds.), Proceedings of the First European Conference on Ecotoxicology, Lyngby, Denmark, 144–148. [Google Scholar]
  • Bengtsson M.M. and Ovreas L., 2010. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol., 10, 261. [CrossRef] [PubMed] [Google Scholar]
  • Bondoso J., Albuquerque L., Lobo-da-Cunha A., da Costa M.S., Harder J. and Lage O.M., 2014. Rhodopirellula lusitana sp. nov. and Rhodopirellula rubra sp. nov., isolated from the surface of macroalgae. Syst. Appl. Microbiol., 37, 157–164. [CrossRef] [PubMed] [Google Scholar]
  • Boersma M. and Vijverberg J., 1996. Food effects on life history traits and seasonal dynamics of Ceriodaphnia pulchella. Freshwater Biol., 35, 25–34. [CrossRef] [Google Scholar]
  • Brendelberger H., 1991. Filter mesh size of cladocerans predicts retention efficency for bacteria. Limnol. Oceanogr., 36, 884–894. [CrossRef] [Google Scholar]
  • Bukovinszky T., Verschoor A.M., Helmsing N.R., Bezemer T.M., Bakker E.S., Vos M. and Domis L.N.S., 2012. The good, the bad and the plenty: interactive effects of food quality and quantity on the growth of different Daphnia species. PLoS ONE, 7, e42966. [CrossRef] [PubMed] [Google Scholar]
  • Castro B.B., Consciência S. and Gonçalves F., 2007. Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones. Hydrobiologia, 594, 165–174. [CrossRef] [Google Scholar]
  • Chipman L., Podgorski D., Green S., Kostka J., Cooper W. and Huettel M., 2010. Decomposition of plankton-derived dissolved organic matter in permeable coastal sediments. Limnol. Oceanogr., 55, 857–871. [CrossRef] [Google Scholar]
  • Dedysh S.N., Pankratov T.A., Belova S.E., Kulichevskaya I.S. and Liesack W., 2006. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl. Environ. Microbiol., 72, 2110–2117. [CrossRef] [PubMed] [Google Scholar]
  • Degans H., Zöllner E., Gucht K., Meester L. and Jürgens K., 2002. Rapid Daphnia-mediated changes in microbial community structure: an experimental study. FEMS Microbiol. Ecol., 42, 137–149. [CrossRef] [PubMed] [Google Scholar]
  • DeMott W.R., 1989. The role of competition in zooplankton sucession. In: Sommer U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer-Verlag, New York, 195–252. [Google Scholar]
  • De Stasio B.T. Jr., Rudstam L.G., Haning A., Soranno P. and Allen Y.C., 1995. An in situ test of the effects of food quality on Daphnia population growth. Hydrobiologia, 307, 221–230. [CrossRef] [Google Scholar]
  • Ebert D., 2005. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia, National Center for Biotechnology Information, US, ISBN-10: 1-932811-06-0. [Google Scholar]
  • Environment Canada, 1992. Biological Test Method: Growth Inhibition Test Using the Freshwater Alga Selenastrum capricornutum, Report EPS1/RM/25, Environment Canada, Ottawa, Ont., Canada. [Google Scholar]
  • Flores C.E., Catita J.M.A. and Lage O.M., 2014. Assessment of planctomycetes cell viability after pollutants exposure. Antonie van Leeuwenhoek, 106, 399–411. [CrossRef] [PubMed] [Google Scholar]
  • Freese H.M. and Martin-Creuzburg D., 2013. Food quality of mixed bacteria-algae diets for Daphnia magna. Hydrobiologia, 715, 63–76. [CrossRef] [Google Scholar]
  • Gliwicz Z.M. and Boavida M.J., 1996. Clutch size and body size at first reproduction in Daphnia pulicaria at different levels of food and predation. J. Plankton Res., 18, 863–880. [CrossRef] [Google Scholar]
  • Gliwicz Z.M. and Guisande C., 1992. Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia, 91, 463–467. [CrossRef] [PubMed] [Google Scholar]
  • Gophen M. and Geller W., 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia, 64, 408–412. [CrossRef] [PubMed] [Google Scholar]
  • Guisande C. and Gliwicz Z.M., 1992. Egg size and clutch size in two Daphnia species grown at different food levels. J. Plankton Res., 14, 997–1007. [CrossRef] [Google Scholar]
  • Gulati R.D. and DeMott W.R., 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biol., 38, 753–768. [CrossRef] [Google Scholar]
  • Hochstädter S., 2000. Seasonal changes of C:P ratios of seston, bacteria, phytoplankton and zooplankton in a deep, mesotrophic lake. Freshwater Biol., 44, 453–463. [CrossRef] [Google Scholar]
  • Hu Y.F., Fu C.Z., Yin Y.S., Cheng G., Lei F., Yang X., Li J., Ashforth E.J., Zhang L. and Zhu B., 2010. Construction and preliminary analysis of a Deep-Sea Sediment Metagenomic Fosmid Library from Qiongdongnan Basin, South China Sea. Mar. Biotechnol., 12, 719–727. [CrossRef] [Google Scholar]
  • Hülsmann S., 2001. Reproductive potential of Daphnia galeata in relation to food conditions: implications of changing size-structure of the population. Hydrobiologia, 442, 241–252. [CrossRef] [Google Scholar]
  • Jurgens K., 1994. Impact of Daphnia on planktonic microbial food webs – a review. Mar. Microb. Food Webs, 8, 295–324. [Google Scholar]
  • Kankaala P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwater Biol., 19, 285–296. [Google Scholar]
  • Kerger B.D., Mancuso C.A., Nichols P.D., White D.C., Langworthy T., Sittig M., Schlesner H. and Hirsch P., 1988. The budding bacteria, Pirellula and Planctomyces, with atypical 16S rRNA and absence of peptidoglycan, show eubacterial phospholipids and uniquely high proportions of long chain beta-hydroxy fatty acids in the lipopolysaccharide lipid A. Arch. Microbiol., 149, 255–260. [CrossRef] [Google Scholar]
  • Kilham S.S., Kreeger D., Goulden C. and Lynn S., 1997. Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwater Biol., 38, 639–647. [CrossRef] [Google Scholar]
  • Lachnit T., Meske D., Wahl M., Harder T. and Schmitz R., 2011. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol., 13, 655–665. [CrossRef] [PubMed] [Google Scholar]
  • Lage O.M. and Bondoso J., 2011. Planctomycetes diversity associated with macroalgae. FEMS Microbiol. Ecol., 78, 366–375. [CrossRef] [PubMed] [Google Scholar]
  • Lage O.M. and Bondoso J., 2014. Planctomycetes and macroalgae, a striking association. Front. Microbiol., 5, 267. [PubMed] [Google Scholar]
  • Lage O.M., Bondoso J. and Lobo-da-Cunha A., 2013. Insights into the ultrastructural morphology of novel Planctomycetes. Antonie van Leeuwenhoek, 104, 467–476. [CrossRef] [PubMed] [Google Scholar]
  • Lampert W., 1978. A field study on the dependence of the fecundity of Daphnia spec. on food concentration. Oecologia, 36, 363–369. [CrossRef] [PubMed] [Google Scholar]
  • Langenheder S. and Jurgens K., 2001. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol. Oceanogr., 46, 121–134. [CrossRef] [Google Scholar]
  • Loureiro C., Castro B.B., Pereira J.L. and Gonçalves F., 2011. Performance of standard media in toxicological assessments with Daphnia magna: chelators and ionic composition versus metal toxicity. Ecotoxicology, 20, 139–148. [CrossRef] [PubMed] [Google Scholar]
  • Martin-Creuzburg D., Wacker A. and von Elert E., 2005. Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia, 144, 362–372. [CrossRef] [PubMed] [Google Scholar]
  • Martin-Creuzburg D., Beck B. and Freese H.M., 2011. Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiol. Ecol., 76, 592–601. [Google Scholar]
  • Meng M., Deng D., Zhang X., Ge Q. and Zhang K., 2014. The influence of phosphorus concentration on the population dynamics and resting egg formation of two cladocerans. J. Freshwater Ecol., 29, 387–396. [CrossRef] [Google Scholar]
  • Meyer J.S., Ingersoll C.G., McDonald L.L. and Boyce M.S., 1986. Estimating uncertainty in population growth rates: JackKnife vs. Bootstrap techniques. Ecology, 67, 1156–1166. [CrossRef] [Google Scholar]
  • Morris R.M., Longnecker K. and Giovannoni S.J., 2006. Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ. Microbiol., 8, 1361–1370. [CrossRef] [PubMed] [Google Scholar]
  • Musat N., Werner U., Kolb S., Dodenhof T., Knittel K., van Beusekom J., Beer D.D., Dubilier N. and Amann R., 2006. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst. Appl. Microbiol., 29, 333–348. [CrossRef] [PubMed] [Google Scholar]
  • OECD, 2006. Algal Growth Inhibition Test. Guidelines for Testing of Chemicals, Test Guideline No 201, OECD (Organisation for Economic Cooperation and Development), Paris, France. [Google Scholar]
  • OECD, 2012. Daphnia Magna Reproduction Test, Test Guideline No 211, OECD (Organisation for Economic Cooperation and Development), Paris, France. [Google Scholar]
  • Pace M.L. and Cole J.J., 1994. Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecol., 28, 181–193. [CrossRef] [PubMed] [Google Scholar]
  • Pearson A., Budin M. and Brocks J.J., 2003. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc. Natl. Acad. Sci. USA, 100, 15352–15357. [CrossRef] [Google Scholar]
  • Petersen B.J., Hobbie J.E. and Haney J.F., 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr., 23, 1039–1044. [CrossRef] [Google Scholar]
  • Picard V. and Lair N., 2000. The influence of autotrophic and heterotrophic foods on the demography of Daphnia longispina under starved semi-natural and enriched conditions. J. Plankton Res., 22, 1925–1944. [CrossRef] [Google Scholar]
  • Repka S., 1997a. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. I. Daphnia galeata feeding on Scenedesmus and Oscillatoria. Freshwater Biol., 38, 675–683. [CrossRef] [Google Scholar]
  • Repka S., 1997b. Effects of food type on the life history of Daphnia clones from lakes differing in trophic state. II. Daphnia cucullata feeding on mixed diets. Freshwater Biol., 38, 685–692. [CrossRef] [Google Scholar]
  • Rinke K. and Vijverberg J., 2005. A model approach to evaluate the effect of temperature and food concentration on individual life-history and population dynamics of Daphnia. Ecol. Mod., 186, 326–344. [CrossRef] [Google Scholar]
  • Rusch A., Huettel M., Reimers C.E., Taghon G.L. and Fuller C.M., 2003. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol. Ecol., 44, 89–100. [CrossRef] [PubMed] [Google Scholar]
  • Shaw J.R., Pfrender M.E., Eads B.D., Klaper R., Callaghan A., Sibly R.M., Colson I., Jansen B., Gilbert D. and Colbourne J.K., 2008. Daphnia as an emerging model for toxicological genomics. Adv. Exper. Biol., 2, 165–219. [CrossRef] [Google Scholar]
  • Stein J.R., 1973. Handbook of Phycological Methods – Culture Methods and Growth Measurements, Cambridge University Press, UK. [Google Scholar]
  • Sterner R.W., Hagemeier D.D., Smith W.L. and Smith R.F., 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limn. Oceanogr., 38, 857–871. [Google Scholar]
  • Taipale S.J., Brett M.T., Hahn M.W., Martin-Creuzburg D., Yeung S., Hiltunen M., Strandberg U. and Kankaala P., 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology, 95, 563–576. [CrossRef] [PubMed] [Google Scholar]
  • Taylor B.E., 1985. Effects of food limitation on growth and reproduction of Daphnia. Arch. Hydrobiol. Beih. Ergeb. Limnol., 21, 285–296. [Google Scholar]
  • Vanni M.J. and Lampert W., 1992. Food quality effects on life history traits and fitness in the generalist herbivore Daphnia. Oecologia, 92, 48–57. [CrossRef] [PubMed] [Google Scholar]
  • Viana F., Oliveira R. and Lage O.M., 2013. High ultraviolet C resistance of marine Planctomycetes. Antonie van Leeuwenhoek, 104, 585–595. [CrossRef] [PubMed] [Google Scholar]
  • van Teeseling M.C., Mesman R.J., Kuru E., Espaillat A., Cava F., Brun Y.V., van Nieuwenhze M.S., Kartal B. and van Niftrik L., 2015. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun., 6, 6878. [CrossRef] [PubMed] [Google Scholar]
  • Wacker A. and Martin-Creuzburg D., 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Functional Ecol., 21, 738–747. [Google Scholar]
  • Ward N., Staley J.T., Fuerst J.A., Giovannoni S., Schlesner H. and Stackebrandt E., 2006. The order Planctomycetales, including the genera Planctomyces, Pirellula, Gemmata and Isosphaera and the Candidatus genera Brocadia, Kuenenia and Scalindua. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H. and Stackebrandt E. (eds.), The Prokaryotes: a Handbook on the Biology of Bacteria, Vol. 7, Springer, New York, 757–793. [Google Scholar]
  • Webster N.S. and Bourne D., 2007. Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiol. Ecol., 59, 81–94. [CrossRef] [PubMed] [Google Scholar]
  • Wylie J.L. and Currie D.J., 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr., 36, 708–728. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.