Free Access
Issue |
Ann. Limnol. - Int. J. Lim.
Volume 52
|
|
---|---|---|
Page(s) | 205 - 216 | |
DOI | https://doi.org/10.1051/limn/2016011 | |
Published online | 18 April 2016 |
- Alford R.A., 1989. Variation in predator phenology affects predator performance and prey community composition. Ecology, 70, 206–219. [CrossRef] [Google Scholar]
- Balseiro E.G. and Vega M., 1994. Vulnerability of Daphnia middendorffiana to Parabroteas sarsi predation: the role of the tail spine. J. Plankton Res., 16, 783–793. [Google Scholar]
- Biggs J., Williams P., Whitfield M., Fox G. and Nicolet P., 2000. Biological Techniques of Still Water Quality Assessment: Phase 3. Method Development, Environment Agency, Bristol, UK. [Google Scholar]
- Cobbaert D., Bayley S.E. and Greter J.L., 2010. Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia, 644, 103–114. [CrossRef] [Google Scholar]
- Cohen J.E., Pimm S.L., Yodzis P. and Saldana Y., 1993. Body sizes of animals predators and animal prey in food webs. J. Animal Ecol., 62, 67–78. [Google Scholar]
- Cooper S.D., Smith D.W. and Bence J.R., 1985. Prey selection by freshwater predators with different foraging strategies. Can. J. Fisher. Aquat. Sci., 42, 1720–1732. [CrossRef] [Google Scholar]
- Cronin J.T. and Travis J., 1986. Size-limited predation on larval Rana areolata (Anura: Ranidae) by two species of backswimmer (Insecta: Hemiptera: Notonectidae). Herpetologica, 42, 171–174. [Google Scholar]
- Cuassolo F., Balseiro E. and Modenutti B., 2012. Alien vs. native plants in a Patagonian wetland: elemental ratios and ecosystem stoichiometric impacts. Biol. invasions, 14, 179–189. [CrossRef] [Google Scholar]
- Diaz-Villanueva V. and Trochine C., 2005. The role of microorganisms in the diet of Verger cf. Limnophilus (Trichoptera: Limnephilidae) larvae in a patagonian andean temporary pond. Wetlands, 25, 473–479. [CrossRef] [Google Scholar]
- Diéguez M.C. and Balseiro E.G., 1998. Colony size in Conochilus hippocrepis: defensive adaptation to predator stage sizes. Hydrobiologia, 388, 421–425. [CrossRef] [Google Scholar]
- Dionne M. and Folt C.L., 1991. An experimental analysis of macrophyte growth forms as fish foraging habitats. Can. J. Fish. Aquat. Sci., 48, 123–131. [Google Scholar]
- Dong Q. and Polis G.A., 1992. The dynamics of cannibalistic populations: a foraging perspective. In: Elgar M.A. and Crespi B.J. (eds.), Cannibalism, Ecology and Evolution Among Diverse Taxa, Oxford University Press, New York, 13–37. [Google Scholar]
- Epele L.B. and Miserendino M.L., 2015a. Temporal dynamics of invertebrate and aquatic plant communities at three intermittent ponds in livestock grazed Patagonian wetlands. J. Nat. History, 50, 711–730, doi:10.1080/00222933.2015.1062930. [CrossRef] [Google Scholar]
- Epele L.B. and Miserendino M.L., 2015b. Environmental quality and aquatic invertebrate metrics relationships at Patagonian wetlands subjected to livestock grazing pressures. PLoS ONE, 10, e0137873. doi: 10.1371/journal.pone.0137873. [CrossRef] [Google Scholar]
- Formanowicz D.R. Jr., 1986. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica, 42, 367–373. [Google Scholar]
- Formas J.R., 1981. Adaptaciones larvarias de los anuros del bosque temperado Austral de Sudamérica. Medio Ambiente, 5, 15–21. [Google Scholar]
- García R.D., 2010. Ciclo de vida del copépodo depredador Parabroteas sarsi (Calanoida, Centropagidae) Impacto del canibalismo en la población de la Laguna Fantasma. Licenciatura thesis. San Carlos de Bariloche, Universidad Nacional del Comahue. [Google Scholar]
- Gilbert J.P. and DeLong J.P., 2014. Temperature alters food web body-size structure. Biol. Lett., 10, 1–5, doi: 10.1098/rsbl.2014.0473. [Google Scholar]
- Hampton S.E., 2004. Habitat overlaps of enemies: temporal patterns and the role of spatial complexity. Oecologia, 138, 475–484. [CrossRef] [PubMed] [Google Scholar]
- Hershey A.E. and Lamberti G.A., 2001. Aquatic insect ecology. In: Thorp J.H. and Covich A.P. (eds.), Ecology and Classification of North American Freshwater Invertebrates (2nd edn), Academic Press, San Diego, 733–775. [CrossRef] [Google Scholar]
- Holomuzki J.R., Collins J.P. and Brunkow P.E., 1994. Trophic control of fishless ponds by tiger salamander larvae. Oikos, 71, 55–64. [CrossRef] [Google Scholar]
- Jara F.G., 2014. Trophic ontogenetic shifts of the dragonfly Rhionaeschna variegata: the role of larvae as predators and prey in Andean wetland communities. Ann. Limnol. - Int. J. Lim., 50, 173–184. [Google Scholar]
- Jara F.G., Perotti M.G. and Diéguez M.C., 2012. Distribution of backswimmers in shallow ponds of Patagonia and their predatory role on a common tadpole–copepod assemblage. N.Z. J. Mar. Fresh., 46, 459–473. [Google Scholar]
- Jara F.G., Úbeda C.A. and Perotti M.G., 2013. Predatory insects in lentic freshwater habitats from northwest Patagonia: richness and phenology. J. Nat. Hist., 47, 2749–2768. [Google Scholar]
- Lancaster J. and Briers R.A. (eds.), 2008. Aquatic insects: challenges to populations. Proceedings of the Royal Entomological Society's 24th symposium, Cab International, Wallingford, 332 p. [Google Scholar]
- Lancaster J. and Downes B.J., 2013. Aquatic Entomology (1st edn), Oxford University Press, Melbourne, Australia, 285 p. [Google Scholar]
- Lundkvist E., Landin J., Jackson M. and Svensson C., 2003. Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. B. Entomol. Res., 93, 219–226. [Google Scholar]
- Maret T.J. and Collins J.P., 1996. Effect of prey vulnerability on population size structure of a gape-limited predator. Ecology, 77, 320–324. [CrossRef] [Google Scholar]
- Morin P.J., 1983. Predation, competition, and the composition of larval anuran guilds. Ecol. Monogr., 53, 119–138. [Google Scholar]
- Nyström P. and Perez J.R., 1998. Crayfish predation on the common pond snail (Lymnaea stagnalis): the effect of habitat complexity and snail size on foraging efficiency. Hydrobiologia, 368, 201–208. [CrossRef] [Google Scholar]
- Ohba S., 2009. Ontogenetic dietary shift in the larvae of Cybister japonicus (Coleoptera: Dytiscidae) in Japanese rice fields. Environ. Entomol., 38, 856–860. [Google Scholar]
- Ohba S., Miyasaka H. and Nakasuji F., 2008. The role of amphibian prey in the diet and growth of giant water bug nymphs in Japanese rice fields. Popul. Ecol., 50, 9–16. [Google Scholar]
- Peckarsky B.L., 1982. Aquatic insects predator-prey relations. BioScience, 32, 261–266. [CrossRef] [Google Scholar]
- Perotti M.G., Diéguez M.C. and Jara F.G., 2005. Estado del conocimiento de humedales del norte patagónico (Argentina): aspectos relevantes e importancia para la conservación de la biodiversidad regional. Rev. Chil. Hist. Nat., 78, 723–737. [Google Scholar]
- Persson L., Andersson J., Wahlstrom E. and Eklov P., 1996. Size-specific interactions in lake systems: predator gape limitation and prey growth rate and mortality. Ecology, 77, 900–911. [CrossRef] [Google Scholar]
- Raut S.K. and Saha T.C., 1989. The role of water bug Sphaerodema annulatum in the control of disease transmitting snails. J. Med. Appl. Malacol., 1, 97–106. [Google Scholar]
- Schneider D.W. and Frost T.M., 1996. Habitat duration and community structure in temporary ponds. J. N. Am. Benthol. Soc., 15, 64–86. [Google Scholar]
- Skelly D.K., 2002. Experimental venue and estimation of interaction strength. Ecology, 83, 2097–2101. [CrossRef] [Google Scholar]
- Smith C.K. and Petranka J.W., 1987. Prey size distributions and size-specific foraging success of Ambystoma larvae. Oecologia, 71, 214–239. [CrossRef] [Google Scholar]
- Sredl M.J. and Collins J.P., 1992. The interaction of predation, competition, and habitat complexity in structuring an amphibian community. Copeia, 3, 607–614. [CrossRef] [Google Scholar]
- Stav G., Blaustein L. and Margalit Y., 2000. Influence of nymphal Anax imperator (Odonata : Aeshnidae) on oviposition by the mosquito Culiseta longiareolata (Diptera : Culicidae) and community structure in temporary pools. J. Vector Ecol., 25, 190–202. [Google Scholar]
- Stein R.A., Threlkeld S.T., Sandgren C.D., Sprules W.G., Persson L., Werner E.E., Neill W.E. and Dodson S.I., 1988. Size structured interactions in lake communities. In: Carpenter S.R. (ed.), Complex Interactions in Lake Communities, Springer Verlag, New York, 161–179. [CrossRef] [Google Scholar]
- Tarr T.L. and Babbitt K.J., 2002. Effects of habitat complexity and predator identity on predation of Rana clamitans larvae. Amphibia-Reptilia, 23, 13–20. [CrossRef] [Google Scholar]
- Travis J., Keen W.H. and Julianna J., 1985. The role of relative body size in a predator–prey relationship between dragonfly naiads and larval anurans. Oikos, 45, 59–65. [CrossRef] [Google Scholar]
- Trochine C., Modenutti B. and Balseiro E., 2006. Influence of spatial heterogeneity on predation by the flatworm Mesostoma ehrenbergii (Focke) on calanoid and cyclopoid copepods. J. Plankton Res., 28, 267–274. [Google Scholar]
- Trochine C., Balseiro E. and Modenutti B., 2008. Zooplankton of fishless ponds of Northern Patagonia: insights into predation effects of Mesostoma ehrenbergii. Int. Rev. Hydrobiol., 93, 312–327. [Google Scholar]
- Turner A.M. and Chislock M.F., 2007. Dragonfly predators influence biomass and density of pond snails. Oecology, 153, 407–415. [CrossRef] [Google Scholar]
- Urban M.C., 2007. Predator size and phenology shape prey survival in temporary ponds. Oecologia, 154, 571–580. [CrossRef] [PubMed] [Google Scholar]
- Urban M.C., 2008. The evolution of prey body size reaction norms in diverse communities. J. Anim. Ecol., 77, 346–355. [Google Scholar]
- Vega M., 1995. Morphology and defense structures in the predator-prey interaction: an experimental study of Parabroteas sarsi (Copepoda, Calanoida) with different cladoceran preys. Hydrobiologia, 299, 139–145. [CrossRef] [Google Scholar]
- Vega M., 1998. Impact of Parabroteas sarsi (Copepoda: Calanoida) predation planktonic cladocerans in pond of Southern Andes. J. Freshw. Ecol., 13, 383–389. [Google Scholar]
- Vega M.P., 1999. Life-stage differences in the diet of Parabroteas sarsi (Daday)(Copepoda, Calanoida): a field study. Limnologica, 29, 186–190. [CrossRef] [Google Scholar]
- Wellborn G.A., Skelly D.K. and Werner E.E., 1996. Mechanisms creating community structure across a freshwater habitat gradient. Ann. Rev. Ecol. Syst., 27, 337–363. [Google Scholar]
- Wilbur H.M., 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology, 68, 1437–1452. [CrossRef] [Google Scholar]
- Wilbur H.M., 1997. Experimental ecology of food webs: complex systems in temporary ponds. The Robert H. Mac-Arthur Award lecture. Ecology, 78, 2279–2302. [CrossRef] [Google Scholar]
- Wilbur H.M. and Fauth J.E., 1990. Experimental aquatic food webs: interactions between two predators and two prey. Am. Nat., 135, 176–204. [Google Scholar]
- Williams D.D., 2006. The Biology of Temporary Waters, Oxford University Press, Oxford, 337 p. [Google Scholar]
- Winkelmann C., Hellmann C., Worischka S., Petzoldt T. and Benndorf J., 2011. Fish predation affects the structure of a benthic community. Freshwater Biol., 56, 1030–1046. [Google Scholar]
- Woodward G. and Hildrew A.G., 2002. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. Ecol., 71, 1063–1074. [Google Scholar]
- Wright J.F., Sutcliffe D.W. and Furse M.T., 2000. Assessing the Biological Quality of Fresh Waters –RIVPACS and Other Techniques, Freshwater Biological Association, Ambleside, Cumbria, UK, 373 p. [Google Scholar]
- Zhang J., Xie P., Tao M., Guo L., Chen J., Li L., Zhang X. and Zhang L., 2013. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes. PLoS ONE 8(10), e76378. doi: 10.1371/journal.pone.0076378. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.