Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 47 - 60
Published online 21 March 2016
  • Albert R.-L., Korhola A. and Sorvari S., 2012. Analysis of factors controlling epilithic diatom community compositions in subarctic lakes of Finnish Lapland. Adv. Limn., 62, 125–151. [Google Scholar]
  • Audry S., Pokrovsky O.S., Shirokova L.S., Kirpotin S.N. and Dupré B., 2011. Organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lake sediments. Biogeosciences, 8, 3341–3358. [CrossRef] [Google Scholar]
  • Baines S.B. and Pace M.L., 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanog., 36, 1078–1090. [CrossRef] [Google Scholar]
  • Barinova S.S., Medvedeva L.A. and Anisimova O.V., 2006. Biodiversity of Algae – Indicators of the Environment, Tell-Aviv Publ. House, Tel-Aviv, Israel, 356 p. [Google Scholar]
  • Beliakov V.P., Stanislavskaya E.V. and Kapustina L.L., 2015. Estimation of ecological state of some small lakes and rivers of Western Siberia by quantitative characteristics of phyto-, bacterioplankton and zoobenthos. In: Ecological Status of Northern Continental Reservoirs, Proc. Int. Symp., Archangelsk, Russia, 2005, 21–25 June, Saint-Petersburg, 89–96. [Google Scholar]
  • Bergeron M. and Vincent W.F., 1997. Microbial food web responses to phosphorus and solar UV radiation in a subarctic lake. Aquat. Microbiol. Ecol., 12, 129–249. [CrossRef] [Google Scholar]
  • Boike J., Kattenstroth B., Abramova K., Bornemann N., Chetverova A., Fedorova I., Fröb K., Grigoriev M., Grüber M., Kutzbach L., Langer M., Minke M., Muster S., Piel K., Pfeiffer E.-M., Stoof G., Westermann S., Wischnewski K., Wille C. and Hubberten H.-W., 2013. Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences, 10, 2105–2128. [CrossRef] [Google Scholar]
  • Bonilla S., Villeneuve V. and Vincent W.F., 2005. Benthic and planktonic algal communities in a High Arctic Lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol., 41, 1120–1130. [CrossRef] [Google Scholar]
  • Coesèl P. and Meesters K., 2007. Desmids of the Lowlands: Mesotaeniaceae and Desmidiaceae of the European Lowlands, KNNV Publishing, The Netherlands. [Google Scholar]
  • Comte J., Monier A., Crevecoeur S., Lovejoy C. and Vincent W.F., 2015. Bacterial biogeography of permafrost thaw ponds across the changing northern landscape. Ecography, 38, 1–10, doi: 10.1111/ecog.01667. [CrossRef] [Google Scholar]
  • Craig S.R., 1987. The distribution and contribution of picoplankton to deep photosynthetic layers in some meromictic lakes. Acta Academ. Aboensis, 47, 55–81. [Google Scholar]
  • DeNicola D.M., 2000. A review of diatoms found in highly acidic environments. Hydrobiologia, 433, 111–122. [CrossRef] [Google Scholar]
  • Dong J., Zhou W., Song L. and Li G., 2015. Responses of phytoplankton functional groups to simulated winter warming. Ann. Limnol. - Int. J. Lim., 51, 199–210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Douglas M.S.V. and Smol J.P., 1994. Limnology of high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Arch. Hydrobiol., 131, 401–434. [Google Scholar]
  • Douglas M.S.V. and Smol J.P., 1995. Periphytic diatom assemblages from High Arctic ponds. J. Phycol., 31, 60–69. [CrossRef] [Google Scholar]
  • Dugan H.A., Lamoureaux S.F., Lewis T. and Lafrenière M.J., 2012. The impact of permafrost disturbances and sediment loading on the limnological characteristics of two High Arctic lakes. Permafrost Periglacial Proc., 23, 119–126. [CrossRef] [Google Scholar]
  • Earle I.C. and Duthie H.C., 1986. Analysis of phytoplankton composition of 95 Labrador Lakes with special reference to natural and anthropogenic acidification. Can. J. Fish. Aquat. Sci., 43, 1804–1811. [CrossRef] [Google Scholar]
  • Elster J., Svoboda J., Kormarek J. and Marvan P., 1997. Algal and cyanoprocaryote communities in a glacial stream, Svedrup Pass, 79°N, Central Ellesmere Island, Canada. Arch. Hydrobiol. Suppl. Algol. Stud., 85, 57–93. [Google Scholar]
  • Forsström L., Sorvari S., Korhola A., and Rautio M., 2005. Seasonality of phytoplankton in subarctic Lake Saanajärvi in NW Finnish Lapland. Polar Biol., 28, 846–861. [CrossRef] [Google Scholar]
  • Forsström L., Sorvari S., Rautio M., Sonninen E. and Korhola A., 2007. Changes in physical and chemical limnology and plankton during the spring melt period in a subarctic lake. Int. Rev. Hydrobiol., 92, 301–325. [CrossRef] [Google Scholar]
  • Getsen M.V., 1985. Algae in the Ecosystems of Far North (example of Bolshezemelskaya Tundra), Leningrad, Nauka, 165 p. (in Russian). [Google Scholar]
  • Grosse G., Jones B. and Arp C., 2013. Thermokarst lakes, drainage, and drained basins. In: Shroder J. (Editor in Chief), Giardino R., Harbor J. (eds.), Treatise on Geomorphology, Vol. 8, Academic Press, San Diego, CA, Glacial and Periglacial Geomorphology, 325–353. [CrossRef] [Google Scholar]
  • Guseva K.A., 1959. Methods of phytoplankton counting. Trudy. Inst. Biol. Vodochr., 2, 44–51 (In Russian). [Google Scholar]
  • Hay M.B., Michelutti N. and Smol J.P., 2000. Ecological patterns of diatom assemblages from Mackenzie Delta lakes, Northwest Territories, Canada. Canad. J. Bot., 78, 19–33. [Google Scholar]
  • Heinonen P., 1980. Quality and composition of phytoplankton in finnish inland waters. Publ. Water Res. Inst. Helsinki, 37, 1–91. [Google Scholar]
  • Jasser L. and Arvola L., 2003. Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J. Plankton Res., 25, 873–883. [CrossRef] [Google Scholar]
  • Karlsson J.M., Lyon S.W. and Destouni C., 2012. Thermokast lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol., 464–465, 459–466. [CrossRef] [Google Scholar]
  • Karlsson J.M., Lyon S.W. and Destouni G., 2014. Temporal behavior of lake size-distribution in a thawing permafrost landscape in Northwestern Siberia. Rem. Sens., 6, 621–636. [CrossRef] [Google Scholar]
  • Kirpotin S., Polishchuk Y. and Bryksina N., 2009. Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. Int. J. Environ. Stud., 66, 423–431. [CrossRef] [Google Scholar]
  • Kirpotin S., Polishchuk Y., Bryksina N., Sugaipova A., Kouraev A., Zakharova E., Pokrovsky O.S., Shirokova L., Kolmakova M., Manassypov R. and Dupré B., 2011. West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO2 cycle. Int. J. Environ. Stud., 68, 603–623. [Google Scholar]
  • Kokelj S.V., Jenkins R.E., Milburn D., Burn C.R. and Snow N., 2005. The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta Region, Northwest Territories, Canada. Permafrost Periglacial Proc., 16, 343–353. [CrossRef] [Google Scholar]
  • Kokelj S.V., Zajdlik B. and Thompson M.S., 2009. The impacts of thawing permafrost on the chemistry of lakes across the subarctic boreal-tundra transition, Mackenzie Delta Region, Canada. Permafrost Periglacial Proc., 20, 185–199. [CrossRef] [Google Scholar]
  • Kosinskaya E.K., 1960. Desmid Algae. Izd-vo AN USSR, Moscow-Leningrad Publ. House, Moscow, USSR, 706 p. (in Russian). [Google Scholar]
  • Laing T. and Smol J.P., 2000. Factors influencing diatom distribution in circumpolar treeline lakes of northern Russia. J. Phycol., 36, 1035–1048. [CrossRef] [Google Scholar]
  • Laurion I. and Vincent W.F., 1998. Cell size versus taxonometric composition as determinants of UV sensitivity in natural phytoplankton communities. Limnol. Oceanogr., 43, 1774–1779. [Google Scholar]
  • Laurion I., Vincent W.F., MacIntyre S., Retamal L., Dupont C., Francus P. and Pienitz R., 2010. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol. Oceanogr., 55, 115–133. [CrossRef] [Google Scholar]
  • Levine M.A. and Whalen S.C., 2001. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia, 455, 189–201. [CrossRef] [Google Scholar]
  • Lotter A.F., Pienitz R. and Schmidt R., 1998. Diatoms as indicators of environmental change near Arctic and treeline. In: Stoermer E.F. and Smol J.P. (eds.). The Diatoms: Applications to the Environment and Earth Sciences, Cambridge University Press, Cambridge. [Google Scholar]
  • Makarova I.V. and Pichkily L.O., 1970. On some questions of the method of biomass of phytoplankton calculation. Bot. J. (Botanicheskii Zhurnal), 55, 1488–1494. [Google Scholar]
  • Manasypov R.M., Pokrovsky O.S., Kirpotin S.N. and Shirokova L.S., 2014. Thermokarst lakes waters across permafrost zones of Western Siberia. Cryosphere, 8, 1177–1193. [CrossRef] [Google Scholar]
  • Manasypov R.M., Vorobyev S.N., Loiko S.V., Krivtzov I.V., Shirokova L.S., Shevchenko V.P., Kirpotin S.N., Kulizhsky S.P., Kolesnichenko L.G., Zemtsov V.A., Sinkinov V.V. and Pokrovsky O.S., 2015. Seasonal dynamics of thermokarst lake chemical composition in discontinuous permafrost zone of Western Siberia. Biogeosciences, 12, 3009–3028. [CrossRef] [Google Scholar]
  • Milot-Roy V. and Vincent W.F., 1994. UV radiation effects on photosynthesis: the imp,ortance of near-surface thermoclines in a subarctic lake. Arch. Hydrobiol. Beih., 43, 171–184. [Google Scholar]
  • Moore J.W., 1978. Distribution and abundance of phytoplankton in 153 lakes, rivers, and pools in the Northwest Territories. Can. J. Bot., 56, 1765–1773. [CrossRef] [Google Scholar]
  • Mozés A., Présing M. and Vörös L., 2006. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int. Rev. Hydrobiol., 91, 38–50. [CrossRef] [Google Scholar]
  • Negandhi K., Laurion I., Whiticar M.J., Galand P.E., Xu X. and Lovejoy C., 2013. Small thaw ponds: an accounted source of methane in the Canadian high Arctic. PLoS ONE, 8, e78204. [CrossRef] [PubMed] [Google Scholar]
  • Odum E.P., 1971. Fundamentals of Ecology, Saunders, Philadelphia. [Google Scholar]
  • Palamar-Mordvintseva G.M., 1982. Green algae. Class Conjugates. Desmidiales, Nauka, Leningrad, 620 p. (in Russian). [Google Scholar]
  • Patova E.N., 2014. Bloom-forming cyanoprokaryotes in Kharbeyskie Lakes of Bolshezemelskaya Tundra. J. Siber. Fed. Univ., Biology, 3, 282–290. [CrossRef] [Google Scholar]
  • Pfeiffer T.Z., Mihaljevic M., Stevic F. and Spoljaric D., 2013. Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake. Ann. Limnol. - Int. J. Lim., 49, 179–190. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pick F.R. and Agbeti D.M., 1991. The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int. Rev. Hydrobiol., 76, 565–580. [CrossRef] [Google Scholar]
  • Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Audry S., Viers J. and Dupré B., 2011. Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of western Siberia. Biogeosciences, 8, 565–583. [CrossRef] [Google Scholar]
  • Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Kulizhsky S.P. and Vorobiev S.N., 2013. Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone. Biogeosciences, 10, 5349–5365. [CrossRef] [Google Scholar]
  • Pokrovsky O.S., Shirokova L.S. and Kirpotin S.N., 2014. Biogeochemistry of Thermokarst Lakes of Western Siberia, Nova Science Publishers, Inc., New York, 176 p. ISBN 978-1-62948-567-6. [Google Scholar]
  • Polishchuk Y.M., Bryksina N.A. and Polishchuk V.Y., 2015. Remote analysis of changes in the number of small thermokarst lakes and their distribution with respect to their sizes in the cryolithozone of Western Siberia. Izvestiya, Atmosph. Ocean. Phys., 51, 999–1006. [CrossRef] [Google Scholar]
  • Rautio M., Dufresne F., Laurion I., Bonilla S., Vincent W.F. and Christoffersen K.S., 2011. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience, 18, 205–222. [CrossRef] [Google Scholar]
  • Rühland K.M. and Smol J.P., 2002. Freshwater diatoms from the Canadian Arctic treeline and development of paleolimnological inference models. J. Phycol., 38, 249–264. [CrossRef] [Google Scholar]
  • Sheath R.G., 1986. Seasonality of phytoplankton in northern tundra ponds. Hydrobiologia, 138, 75–83. [CrossRef] [Google Scholar]
  • Sheath R.G. and Steinman A.D., 1982. A checklist of freshwater algae of the Northwest Territories, Canada. Can. J. Bot., 60, 1964–1997. [CrossRef] [Google Scholar]
  • Sheath R.G., Vis M.L., Hambrook J.A. and Cole K.M., 1996. Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia, 336, 67–82. [CrossRef] [Google Scholar]
  • Shirokova L.S., Pokrovsky O.S., Kirpotin S.N. and Dupré B., 2009. Heterotrophic bacterio-plankton in thawed lakes of northern part of Western Siberia controls the CO2 flux to the atmosphere. Int. J. Environ. Stud., 66, 433–445. [CrossRef] [Google Scholar]
  • Shirokova L.S., Pokrovsky O.S., Kirpotin S.N., Desmukh C., Pokrovsky B.G., Audry S. and Viers J., 2013. Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry, 113, 573–593. [CrossRef] [Google Scholar]
  • Sladecek V., 1973. System of water quality from the biological point of view. Ergebn. Limnol. – H. 7. – Arsh. Hydrobiol. Bienheft., 7, 1–218. [Google Scholar]
  • Somogyi B., Felföldi T., Dinka M. and Vörös L., 2010. Periodic picophytoplankton predominance in a large, shallow alkaline lake (Lake Fertő, Neusiedlersee). Ann. Limnol. - Int. J. Lim., 46, 9–19. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stockner J.G. and Shortreed K.S., 1991. Autotrophic picoplankton: community composition abundance and distribution across a gradient of oligotrophic British Columbia and Yukon Territory lakes. Int. Rev. Hydrobiol., 76, 585–601. [Google Scholar]
  • Tang E.Y. and Vincent W.F., 1999. Strategies of temperature acclimation by two mat-forming cyanobacteria from contrasting polar environments. New Phytol., 142, 315–323. [CrossRef] [Google Scholar]
  • Tang E.Y., Tremblay R. and Vincent W.F., 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to the low temperature environment? J. Phycol., 33, 171–181. [CrossRef] [Google Scholar]
  • Tank S.E., Esslein R.H.H. and Esack L.F.W.L., 2009. Northern delta lakes as summertime CO2 absorbers within the arctic landscape. Ecosystems, 12, 144–157. [CrossRef] [Google Scholar]
  • Tank S.E., Lesack L.F.W., Gareis J.A.L., Osburn C.L. and Hesslein R.H., 2011. Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnol. Oceanogr., 56, 1297–1309. [CrossRef] [Google Scholar]
  • Trifonova I.S., 1998. Phytoplankton composition and biomass structure in relation to trophic gradient in some temperate and subarctic lakes of northwestern Russia and the Prebaltic. Hydrobiologia, 369/370, 99–108. [CrossRef] [Google Scholar]
  • Trifonova I.S. and Petrova A.L., 1994. Structure and dynamics of phytoplankton biomass. In: Drabkova, V.G. and Trifonova I.S. (eds.), Peculiarities of Ecosystems of Lakes of the North (Case Study of Bolshezemelskaya Tundra Lakes), Nauka, St. Petersbourg, 80–109 (in Russian). [Google Scholar]
  • Vérzina S. and Vincent W.F., 1997. Arctic cyanobacteria and limnologicla properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biol., 17, 523–534. [CrossRef] [Google Scholar]
  • Vincent W.F., 2000. Cyanobacterial dominance in the polar regions. In: Whitton, B. and Potts M. (eds.), Ecology of the Cyanobacteria: their Diversity in Space and Time, Kluwers Academic Press, Netherlands, pp. 321–340. [Google Scholar]
  • Vincent W.F. and Quesada A., 1997. Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats. In: Battaglia B., Valencia J. and Walton D. (eds.) Antarctic Communities: Species, Structure and Survival, Cambridge University Press, Cambridge, pp. 388–395. [Google Scholar]
  • Vörös L., Gulyas P. and Németh J., 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Rev. Ges. Hydrobiol., 76, 617–629. [CrossRef] [Google Scholar]
  • Walter K.M., Zimov S.A., Chanton J.P., Verbyla D. and Chapin F.S. III, 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 443, 71–75. [CrossRef] [PubMed] [Google Scholar]
  • Walter K.M., Chanton J.P., Chapin F.S. III, Schuur E.A.G. and Zimov S.A., 2008. Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. J. Geophys. Res., 113, G00A08. [CrossRef] [Google Scholar]
  • Walter Anthony K.M. and Anthony P., 2013. Constraining spatial variability of methane ebullition in thermokarst lakes using point-process models. J. Geophys. Res., 118, 1015–1034. [CrossRef] [Google Scholar]
  • Walter Anthony K.M., Anthony P., Grosse G. and Chanton J., 2012. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci., 5, 419–426. [CrossRef] [Google Scholar]
  • Walter Anthony K.M., Zimov S.A., Grosse G., Jones M.C., Anthony P.M., Chapin F.S. III, Finlay J.C., Mack M.C., Davydov S., Frenzel P. and Frolking S., 2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452–456. [CrossRef] [PubMed] [Google Scholar]
  • Willén E., 1979. Water quality and phytoplankton in two large Swedish lakes. Acta Botan. Fennica, 110, 81–85. [Google Scholar]
  • Yeghicheyan D., Bossy C., Bouhnik Le Coz M., Douchet C., Granier G., Heimburger A., Lacan F., Lanzanova A., Rousseau T.C.C., Seidel J.-L., Tharaud M., Candaudap F., Chmeleff J., Cloquet C., Delpoux S., Labatut M., Losno R., Pradoux C., Sivry Y. and Sonke J. E. (2013) A Compilation of Silicon, Rare Earth Element and Twenty-One other Trace Element Concentrations in the Natural River Water Reference Material SLRS-5 (NRC-CNRC). Geostandards and Geoanalytical Research, 37, 449–467. doi: 10.1111/j.1751-908X.2013.00232.x. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.