Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 27 - 32
DOI https://doi.org/10.1051/limn/2015035
Published online 25 January 2016
  • Alex A., Silva V., Vasconcelos V. and Antunes A., 2013. Evidence of unique and generalist microbes in distantly related sympatric intertidal marine sponges (Porifera: Demospongiae). PLoS ONE, 8(11), 1–10, doi: 10.1371/journal.pone.0080653 [CrossRef] [PubMed] [Google Scholar]
  • Bryant D.A. and Frigaard N.-U., 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol., 14, 488–496. [CrossRef] [PubMed] [Google Scholar]
  • Burja A.M. and Hill R.T., 2001. Microbial symbionts of the Australian Great Barrier Reef sponge, Candidaspongia flabellata. Hydrobiologia, 461, 41–47. [CrossRef] [Google Scholar]
  • Chun J., Kim K.Y., Lee J.-H. and Choi Y., 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol., 10, 101–108. [CrossRef] [PubMed] [Google Scholar]
  • Cleary D.F., Becking L.E., de Voogd N.J., Pires A.C., Polónia A.R., Egas C. and Gomes N.C., 2013. Habitat-and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol. Ecol., 85, 465–482. [CrossRef] [PubMed] [Google Scholar]
  • DeBruyn J.M., Nixon L.T., Fawaz M.N., Johnson A.M. and Radosevich M., 2011. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol., 77, 6295–6300. [CrossRef] [PubMed] [Google Scholar]
  • Dunlap W.C., Battershill C.N., Liptrot C.H., Cobb R.E., Bourne D.G., Jaspars M., Long P.F. and Newman D.J., 2007. Biomedicinals from the phytosymbionts of marine invertebrates: a molecular approach. Methods, 42, 358–376. [CrossRef] [PubMed] [Google Scholar]
  • Erwin P.M., López-Legentil S. and Turon X., 2012. Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Microb. Ecol., 64, 771–783. [CrossRef] [PubMed] [Google Scholar]
  • Gernert C., Glöckner F.O., Krohne G. and Hentschel U., 2005. Microbial diversity of the freshwater sponge Spongilla lacustris. Microb. Ecol., 50, 206–212. [CrossRef] [PubMed] [Google Scholar]
  • Gladkikh A., Kalyuzhnaya O.V., Belykh O., Ahn T.S. and Parfenova V., 2014. Analysis of bacterial communities of two Lake Baikal endemic sponge species. Microbiology, 83, 787–797. [CrossRef] [Google Scholar]
  • Hampton S.E., Izmest'eva L.R., Moore M.V., Katz S.L., Dennis B. and Silow E.A., 2008. Sixty years of environmental change in the world's largest freshwater lake–Lake Baikal, Siberia. Glob. Change Biol., 14, 1947–1958. [CrossRef] [Google Scholar]
  • Hentschel U., Hopke J., Horn M., Friedrich A.B., Wagner M., Hacker J. and Moore B.S., 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol., 68, 4431–4440. [CrossRef] [PubMed] [Google Scholar]
  • Jung D., Seo E.-Y., Epstein S.S., Joung Y., Han J., Parfenova V.V., Belykh O.I., Gladkikh A.S. and Ahn T.S., 2014. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol. Ecol., 90, 417–423. [PubMed] [Google Scholar]
  • Kamke J., Taylor M.W. and Schmitt S., 2010. Activity profiles for marine sponge-associated bacteria obtained by 16s rRNA vs 16s rRNA gene comparisons. ISME J., 4, 498–508. [CrossRef] [PubMed] [Google Scholar]
  • Kunin V., Engelbrektson A., Ochman H. and Hugenholtz P., 2010. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol., 12, 118–123. [CrossRef] [PubMed] [Google Scholar]
  • Li Z.-Y., He L.-M., Wu J. and Jiang Q., 2006. Bacterial community diversity associated with four marine sponges from the South China Sea based on 16s rDN-DGGE fingerprinting. J. Exp. Mar. Biol. Ecol., 329, 75–85. [CrossRef] [Google Scholar]
  • Mahajan G.B. and Balachandran L., 2011. Antibacterial agents from actinomycetes-a review. Front. Biosci., 4, 240–253. [Google Scholar]
  • Masuda Y., 2009. Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. In: Mueller W.E.G. and Grachev M.A. (eds.), Biosilica in Evolution, Morphogenesis, and Nanotechnology, Progress in Molecular and Subcellular Biology, Vol. 47, Springer-Verlag, Berlin, 81–110. [CrossRef] [Google Scholar]
  • Moore M.V., Hampton S.E., Izmest'eva L.R., Silow E.A., Peshkova E.V. and Pavlov B.K., 2009. Climate change and the world's “sacred sea”-Lake Baikal, Siberia. BioScience, 59, 405–417. [CrossRef] [Google Scholar]
  • Munn C., 2011. Marine Microbiology: Ecology and Application (2nd edn,), Garland Science, New York, 50. [Google Scholar]
  • Parfenova V., Terkina I., Kostornova T.Y., Nikulina I., Chernykh V. and Maksimova E., 2008. Microbial community of freshwater sponges in Lake Baikal. Biol. Bull., 35, 374–379. [CrossRef] [Google Scholar]
  • Ralf G. and Repeta D.J., 1992. The pigments of Prochlorococcus marinus: the presence of divinylchlorophyll a and b in a marine procaryote. Limnol. Oceanogr., 37, 425–433. [CrossRef] [Google Scholar]
  • Regoli F., Cerrano C., Chierici E., Bompadre S. and Bavestrello G., 2000. Susceptibility to oxidative stress of the mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar. Biol., 137, 453–461. [CrossRef] [Google Scholar]
  • Reiswig H.M., 1974. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol., 14, 231–249. [CrossRef] [Google Scholar]
  • Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H. and Robinson C.J., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75, 7537–7541. [CrossRef] [PubMed] [Google Scholar]
  • Schmitt S., Tsai P., Bell J., Fromont J., Ilan M., Lindquist N., Perez T., Rodrigo A., Schupp P.J. and Vacelet J., 2012. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J., 6, 564–576. [CrossRef] [PubMed] [Google Scholar]
  • Taylor M.W., Radax R., Steger D. and Wagner M., 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev., 71, 295–347. [CrossRef] [PubMed] [Google Scholar]
  • Taylor M.W., Schupp P.J., Dahllöf I., Kjelleberg S. and Steinberg P.D., 2004. Host specificity in marine sponge ‐associated bacteria, and potential implications for marine microbial diversity. Environ. Microbiol., 6, 121–130. [CrossRef] [PubMed] [Google Scholar]
  • Vacelet J. and Boury-Esnault N., 1995. Carnivorous sponges. Nature, 373, 333–335. [CrossRef] [Google Scholar]
  • Vogel G. 2008. The inner lives of sponges. Science 320, 1028–1030. [CrossRef] [PubMed] [Google Scholar]
  • Webster N.S. and Blackall L.L., 2009. What do we really know about sponge-microbial symbioses. ISME J., 3, 1–3. [CrossRef] [PubMed] [Google Scholar]
  • Weinberg E., Weinberg I., Efremova S., Tanichev A. and Masuda Y., 2003. Late Pliocene spongial fauna in Lake Baikal (from material from the deep drilling core BDP-96-1). In: Kashiwaya K. (ed.), Long Continental Records from Lake Baikal, Springer-Verlag, Tokyo, 283–293. [CrossRef] [Google Scholar]
  • Weisz J.B., Hentschel U., Lindquist N. and Martens C.S., 2007. Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar. Biol., 152, 475–483. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.