Free Access
Ann. Limnol. - Int. J. Lim.
Volume 52
Page(s) 171 - 186
Published online 21 March 2016
  • Bae M.-J., Kwon Y., Hwang S.-J., Chon T.-S., Yang H.-J., Kwak I.-S., Park J.-H., Ham S.-A. and Park Y.-S., 2011. Relationship between three major stream assemblages and their environmental factors in multiple spatial scales. Ann. Limnol. - Int. J. Lim., 47, S91–S105. [Google Scholar]
  • Bates B.C., Kundzewicz Z.W., Wu S. and Palutikof J.P. (eds.), 2008. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Sectetariat, Geneva, 200 p. [Google Scholar]
  • Bayley P.B. and Li H.W., 1992. Riverine fishes. In: Calow P. and Petts G.E. (eds.), The Rivers Handbook: Hydrological and Ecological Principles, Vol. 1: Blackwell Scientific Publications, Oxford, 251–281. [Google Scholar]
  • Buisson L., Grenouillet G., Villéger S., Canal J. and Laffaille P., 2013. Toward a loss of functional diversity in stream fish assemblages under climate change. Glob. Change Biol., 19, 387–400. [CrossRef] [Google Scholar]
  • Caissie D., 2006. The thermal regime of rivers: a review. Freshw. Biol., 51, 1389–1406. [Google Scholar]
  • CCSP, 2008. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. A report by the U.S. Climate Change Science Program and the subcommittee on global change research. U.S. Environmental Protection Agency, Washington, DC, 362 p. [Google Scholar]
  • Chu C., Mandrak N.E. and Minns C.K., 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib., 11, 299–310. [CrossRef] [Google Scholar]
  • Cohen S., Miller K., Duncan K., Gregorich E., Groffiman P., Kovacs P., Magaňa V., McKnight D., Mills E. and Schimel D., 2001. North America. In: McCarthy J.J., Canziani O.F., Leary N.A., Dokken D.J. and White K.S. (eds.), Climate Change 2001: Impact, Adaptation and Vulnerability. Contribution of Working Group II to the third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 735–800. [Google Scholar]
  • Doi H., 2008. Delayed phenological timing of dragonfly emergence in Japan over five decades. Biol. Lett., 4, 388–391. [CrossRef] [PubMed] [Google Scholar]
  • Domisch S., Araújo M.B., Bonada N., Pauls S.U., Jähnig S.C. and Haase P., 2013. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol., 19, 752–762. [CrossRef] [Google Scholar]
  • Ducharne A., 2008. Importance of stream temperature to climate change impact on water quality. Hydrol. Earth Syst. Sci., 12, 797–810. [CrossRef] [Google Scholar]
  • Eaton J.G. and Scheller M., 1996. Effects of climate warming on fish thermal habitat in streams of the United States. Limnol. Oceanogr., 41, 1109–1115. [CrossRef] [Google Scholar]
  • ESRI, 2004. ArcGIS Software. Environmental Systems Research Institute, Redlands. [Google Scholar]
  • Ficke A., Myrick C. and Hansen L., 2007. Potential impacts of global climate change on freshwater fisheries. Rev. Fish Biol. Fisher., 17, 581–613. [Google Scholar]
  • Field C.B., Mortsch L.D., Brklacich M., Forbes D.L., Kovacs P., Patz J.A., Running S.W. and Scott M.J., 2007. North America. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J. and Hanson C.E. (eds.), Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 17–652. [Google Scholar]
  • Grell G.A., Dudhia J. and Stauffer D.R., 1994. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Technical Note NCAR/TN-398+STR, Mesoscale and Microscale Meteorological Division, National Center for Atmospheric Research, Boulder. [Google Scholar]
  • Harvey B.C., 1987. Susceptibility of young-of-the year fishes to downstream displacement by flooding. Trans. Am. Fisher. Soc., 116, 851–855. [CrossRef] [Google Scholar]
  • Heino J., Virkkala R. and Toivonen H., 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol. Rev., 84, 39–54. [CrossRef] [Google Scholar]
  • Hwang S.-J., Kim N.-Y., Yoon S., Kim B.-H., Park M.H., You K.-A., Lee H.Y., Kim H.S., Kim Y.J. and Lee J., 2011. Distribution of benthic diatoms in Korean rivers and streams in relation to environmental variables. Ann. Limnol. - Int. J. Lim., 47, S15–S33. [CrossRef] [EDP Sciences] [Google Scholar]
  • IBM, 2011. IBM SPSS Statistics 20.0.0, IBM Corporation, Somers. [Google Scholar]
  • IPCC, 2007. Climate change 2007: impacts, adaptation and vulnerability. In: Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J. and Hanson C.E. (eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 976 p. [Google Scholar]
  • Juggins S., 2007. C2 version 1.5 user guide. Software for Ecological and Palaeoecological Data Analysis and Visualization, Newcastle University, Newcastle upon Tyne. [Google Scholar]
  • Karl T.R., Melillo J.M. and Peterson T.C. (eds.), 2009. Ecosystems. In: Global Climate Change Impacts in the United States, Cambridge University Press, New York, 79–88. [Google Scholar]
  • Kim D.S., 2000. Korean vegetation types using NOAA/AVHRR data. J. Korean Geogr. Soc., 35, 39–51 (in Korean with English abstarct). [Google Scholar]
  • Kim I.S. and Park J.Y., 2002. Freshwater Fish of Korea, Kyo-Hak Publishing, Seoul, 465 p. (in Korean). [Google Scholar]
  • Kojiri T., Hamaguchi T. and Ode M., 2008. Assessment of global warming impacts on water resources and ecology of a river basin in Japan. J. Hydro-Environ. Res., 1, 164–175. [CrossRef] [Google Scholar]
  • Kong W.-S., 2004. Species composition and distribution of native Korean conifers. J. Korean Geogr. Soc., 39, 528–543 (in Korean with English abstract). [Google Scholar]
  • Kwon Y.-S., Li F., Chung N., Bae M.-J., Hwang S.-J., Byoen M.-S., Park S.-J. and Park Y.-S., 2012. Response of fish communities to various environmental variables across multiple spatial scales. Int. J. Environ. Res. Public Health, 9(10), 3629–3653. [CrossRef] [PubMed] [Google Scholar]
  • Langan S.J., Johnston L., Donaghy M.J., Youngson A.F., Hay D.W. and Soulsby C., 2001. Variation in river water temperatures in an upland stream over a 30-year period. Sci. Total Environ., 265, 195–207. [Google Scholar]
  • Lee J.-H., Han J.-H., Kumar H.K., Choi J.-K., Byeon H.K., Choi J., Kim J.-K., Jang M.-H., Park H.-K. and An K.-G., 2011a. National-level integrative ecological health assessments based on the index of biological integrity, water quality, and qualitative habitat evaluation index, in Korean rivers. Ann. Limnol. - Int. J. Lim., 47, S73–S89. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lee S.-W., Hwang S.-J., Lee J.-K., Jung D.-I., Park Y.-J. and Kim J.-T., 2011b. Overview and application of the National Aquatic Ecological Monitoring Program (NAEMP) in Korea. Ann. Limnol. - Int. J. Lim., 47, S3–S14. [CrossRef] [EDP Sciences] [Google Scholar]
  • Legutke S. and Voss R., 1999. The Hamburg Atmosphere-Ocean Coupled Circulation Model ECHO-G, German Climate Computer Center (DKRZ), Hamburg, 62 p. [Google Scholar]
  • Lehtonen H., 1996. Potential effects of global warming on northern European freshwater fish and fisheries. Fisher. Manag. Ecol., 3, 59–71. [CrossRef] [Google Scholar]
  • Li F., Cai Q., Jiang W. and Qu X., 2012a. Macroinvertebrate relationships with water temperature and water flow in subtropical monsoon streams of Central China: implications for climate change. Fund. Appl. Limnol./Arch. Hydrobiol., 180, 221–231. [CrossRef] [Google Scholar]
  • Li F., Cai Q., Jiang W. and Qu X., 2012b. The response of benthic macroinvertebrate communities to climate change: evidence from subtropical mountain streams in Central China. Int. Rev. Hydrobiol., 97, 200–214. [CrossRef] [Google Scholar]
  • Li F., Chung N., Bae M.-J., Kwon Y.-S., Kwon T.-S. and Park Y.-S., 2013. Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions. Clim. Change, 119, 421–434. [CrossRef] [Google Scholar]
  • Li F., Kwon Y.-S., Bae M.-J., Chung N., Kwon T.-S. and Park Y.-S., 2014. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea. Conserv. Biol., 28, 498–508. [CrossRef] [PubMed] [Google Scholar]
  • Li F., Tierno de Figueroa J.M., Lek S. and Park Y.-S., 2015. Continental drift and climate change drive instability in insect assemblages. Sci. Rep., 5, 11343. [CrossRef] [PubMed] [Google Scholar]
  • Magnuson J.J., Crowder L.B. and Medvick P.A., 1979. Temperature as an ecological resource. Am. Zool., 19, 331–343. [Google Scholar]
  • Mauget S.A., 2003. Multidecadal regime shifts in US streamflow, precipitation, and temperatures at the end of the twentieth century. J. Clim., 16, 3905–3916. [CrossRef] [Google Scholar]
  • MOE/NIER, 2008. The Survey and Evaluation of Aquatic Ecosystem Health in Korea, The Ministry of Environment/National Institute of Environmental Research, Incheon, 337 p. (in Korean with English summaries). [Google Scholar]
  • MOE/NIER, 2009. A Photobook and Guide to Freshwater Fishes in Rivers of Korea (I), The Ministry of Environment/National Institute of Environmental Research, Incheon, 259 p. (in Korean). [Google Scholar]
  • Mohseni O. and Stefan H.G., 1999. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol., 218, 128–141. [CrossRef] [Google Scholar]
  • Mohseni O., Erickson T.R. and Stefan H.G., 1999. Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resour. Res., 35, 3723–3733. [CrossRef] [Google Scholar]
  • Mohseni O., Stefan H.G. and Eaton J.G., 2003. Global warming and potential changes in fish habitat in U.S. streams. Clim. Change, 59, 389–409. [CrossRef] [Google Scholar]
  • Moore R.D., 2006. Stream temperature patterns in British Columbia, Canada, based on routine spot measurements. Can. Water Resour. J., 31, 41–56. [CrossRef] [Google Scholar]
  • Morrill J.C., Bales R.C. and Conklin M.H., 2005. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng., 131, 139–146. [Google Scholar]
  • Murdoch P.S., Baron J.S. and Miller T.L., 2000. Potential effects of climate change on surface-water quality in North America. J. Am. Water Resour. Assoc., 36, 347–366. [CrossRef] [Google Scholar]
  • Nakicenovic N., Alcamo J., Davis G., de Vries B., Fenhann J., Gaffin S., Gregory K., Grubler A., Jung T.Y., Kram T., La Rovere E.L., Michaelis L., Mori S., Morita T., Pepper W., Pitcher H.M., Price L., Riahi K., Roehrl A., Rogner H.-H., Sankovski A., Schlesinger M., Shukla P., Smith S.J., Swart R., van Rooijen S., Victor N. and Dadi Z., 2000. Special Report on Emissions Scenarios: a Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 570 p. [Google Scholar]
  • NIBR, 2011. Red Data Book of Endangered Fishes in Korea, National Institute of Biological Resources, Incheon, 202 p. (in Korean with English summary). [Google Scholar]
  • O'Neal K., 2002. Effects of Global Warming on Trout and Salmon in U.S. Streams, Defenders of Wildlife, Washington, DC, 46 p. [Google Scholar]
  • Parmesan C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637–669. [Google Scholar]
  • Parmesan C., Duarte C., Poloczanska E., Richardson A.J. and Singer M.C., 2011. Overstretching attribution. Nat. Clim. Change, 1, 2–4. [CrossRef] [Google Scholar]
  • Pereira H.M., Leadley P.W., Proença V., Alkemade R., Scharlemann J.P.W., Fernandez-Manjarrés J.F., Araújo M.B., Balvanera P., Biggs R., Cheung W.W.L., Chini L., Cooper H.D., Gilman E.L., Guénette S., Hurtt G.C., Huntington H.P., Mace G.M., Oberdorff T., Revenga C., Rodrigues P., Scholes R.J., Sumaila U.R. and Walpole M., 2010. Scenarios for global biodiversity in the 21st century. Science, 330, 1496–1501. [CrossRef] [PubMed] [Google Scholar]
  • Pereira H.M., Navarro L.M. and Martins I.S., 2012. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour., 37, 25–50. [CrossRef] [Google Scholar]
  • Poff N.L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc., 16, 391–409. [Google Scholar]
  • Poff N.L., Angermeier P.L., Cooper S.D., Lake P.S., Fausch K.D., Winemiller K.O., Mertes L.A.K., Oswood M.W., Reynolds J. and Rahel F.J., 2001. Fish diversity in streams and rivers. In: Chapin F.S.I., Sala O.E. and Huber-Sannwald E. (eds.), Global Biodiversity in a Changing Environment: Scenarios for the 21st Century, Springer, New York, 351–368. [Google Scholar]
  • Rahel F.J., 2002. Using current biogeographic limits to predict fish distributions following climate change. In: McGinn N.A. (ed.), Fisheries in a Changing Climate, American Fisheries Society, Bethesda, 99–109. [Google Scholar]
  • Rahel F.J., Keleher C.J. and Anderson J.L., 1996. Potential habitat loss and population fragmentation for cold water fish in the North Platte River drainage of the Rocky Mountains: response to climate change. Limnol. Oceanogr., 41, 1116–1123. [CrossRef] [Google Scholar]
  • Ricciardi A. and Rasmussen J.B., 1999. Extinction rates of North American freshwater fauna. Conserv. Biol., 13, 1220–1222. [Google Scholar]
  • Rieman B.E., Isaak D., Adams S., Horan D., Nagel D., Luce C. and Myers D., 2007. Anticipated climate warming effects on bull trout habitats and populations across the interior Columbia River basin. Trans. Am. Fish. Soc., 136, 1552–1565. [CrossRef] [Google Scholar]
  • Sala O.E., Chapin F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B., Kinzig A., Leemans R., Lodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M.T., Walker B.H., Walker M. and Wall D.H., 2000. Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. [Google Scholar]
  • Scott M.C., Helfman G.S., McTammany M.E., Benfield E.F. and Bolstad P.V., 2007. Multiscale infuences on physical and chemical stream conditions across Blue Ridge landscapes. J. Am. Water Resour. As., 38, 1379–1392. [CrossRef] [Google Scholar]
  • Snelder T.H. and Biggs B.J.F., 2002. Multiscale river environment classification for water resources management. J. Am. Water Resour. Assoc., 38, 1225–1239. [CrossRef] [Google Scholar]
  • Sutherland W.J., Freckleton R.P., Godfray H.C.J., Beissinger S.R., Benton T., Cameron D.D., Carmel Y., Coomes D.A., Coulson T., Emmerson M.C., Hails R.S., Hays G.C., Hodgson D.J., Hutchings M.J., Johnson D., Jones J.P.G., Keeling M.J., Kokko H., Kunion W.E., Lambin X., Lewis O.T., Malhi Y., Mieszkowska N., Milner-Gulland E.J., Norris K., Phillimore A.B., Purves D.W., Reid J.M., Reuman D.C., Thompson K., Travis J.M.J., Turnbull L.A., Wardle D.A. and Wiegand T., 2013. Identification of 100 fundamental ecological questions. J. Ecol., 101, 58–67. [CrossRef] [Google Scholar]
  • Taniguchi Y., Rahel F.J., Novinger D.C. and Gerow K.G., 1998. Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Can. J. Fish. Aquat. Sci., 55, 1894–1901. [CrossRef] [Google Scholar]
  • ter Braak C.J.F. and Juggins S., 1993. Weighted averaging partial least squares regression (W-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269–270, 485–502. [CrossRef] [Google Scholar]
  • ter Braak C.J.F. and van Dam H., 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia, 178, 209–223. [CrossRef] [Google Scholar]
  • Vörösmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S.E., Sullivan C.A., Liermann C.R. and Davies P.M., 2010. Global threats to human water security and river biodiversity. Nature, 467, 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Walling D.E. and Webb B.W., 1994. Water quality: I. Physical characteristics. In: Calow P. and Petts G.E. (eds.), The Rivers Handbook: Hydrological and Ecological Principles, Vol. 2: Blackwell Scientific Publications, Oxford, 48–72. [Google Scholar]
  • Webb B.W., Hannah D.M., Moore R.D., Brown L.E. and Nobilis F., 2008. Recent advances in stream and river temperature research. Hydrol. Process., 22, 902–918. [CrossRef] [Google Scholar]
  • Welch E.B., Jacoby J.M. and Lindell T., 2004. Fish. In: Pollutant Effects in Freshwater (3rd edn), Spon Press, New York, 353–399. [Google Scholar]
  • Xenopoulos M.A., Lodge D.M., Alcamo J., Märker M., Schulze K., van Vuuren D.P., 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob. Change Biol., 11, 1557–1564. [Google Scholar]
  • Yoon J.-D., Kim J.-H., Byeon M.-S., Yang H.-J., Park J.-Y., Shim J.-H., Song H.-B., Yang H. and Jang M.-H., 2011. Distribution patterns of fish communities with respect to environmental gradients in Korean streams. Ann. Limnol. - Int. J. Lim., 47, S63–S71. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.