Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 4, 2015
Page(s) 343 - 349
DOI https://doi.org/10.1051/limn/2015034
Published online 15 January 2016
  • Andersen T., Cranston P.S. and Epler J.H., 2013. Chironomidae of the Holarctic Region: keys and diagnoses. Part 1. Larvae. Insect Syst. Evol. Suppl., 66, 1–573. [Google Scholar]
  • Anderson T.D., Jin-Clark Y., Begum K., Starkey S.R. and Zhu K.Y., 2008. Gene expression profiling reveals decreased expression of two hemoglobin genes associated with increased consumption of oxygen in Chironomus tentans exposed to atrazine: a possible mechanism for adapting to oxygen deficiency. Aquat. Toxicol., 86, 148–156. [CrossRef] [PubMed] [Google Scholar]
  • Armitage P.D., Cranston P.S. and Pinder L.C.V., 1995. The Chironomidae. Biology and Ecology of Non-biting Midges, Chapman and Hall, London-Madryt, 572 p. [Google Scholar]
  • Baker R.L. and Ball S.L., 1995. Microhabitat selection by larval Chironomus tentans (Diptera, Chironomidae): effects of predators, food, cover and light. Freshwater Biol., 34, 101–106. [Google Scholar]
  • Brundin L., 1950. The relation of O2-microstratification at the mud surface to the ecology of the profundal bottom fauna. Rep. Inst. Freshwat. Res., Drottningholm, 32, 32–42. [Google Scholar]
  • Chubarenko B. and Margoński P., 2008. The Vistula Lagoon. In: Schiewer U. (ed.), Ecology of Baltic Coastal Waters. Ecological Studies, Springer-Verlag, Berlin-Heidelberg, 197, 167–195. [CrossRef] [Google Scholar]
  • Czeczuga B., 1960. Haemoglobin in the Chironomus (Tendipes) annularius Meig. larvae from various growth classes. Nature, 186, 484–484. [CrossRef] [PubMed] [Google Scholar]
  • Dauer D.M., Ewing R.M. and Rodi A.J., 1987. Macrobenthic distribution within the sediment along an estuarine salinity gradient. Int. Rev. ges. Hydrobiol., 72, 529–538. [Google Scholar]
  • Downing J.A., 1991. The effect of habitat structure on the spatial distribution of freshwater invertebrate populations. In: Bell S.S., McCoy E.D. and Mushinsky H.R. (eds.), Habitat Structure. The Physical Arrangements of Objects in Space. Springer-Science+Business Media, B.V., Dordrecht, 87–106. [CrossRef] [Google Scholar]
  • Downing J.A. and Rath L.C., 1988. Spatial patchiness in the lacustrine sedimentary environment. Limnol. Oceanogr., 33, 447–458. [CrossRef] [Google Scholar]
  • Frank C., 1983. Ecology, production and anaerobic metabolism of chironomus plumosus L larvae in a shallow lake. 2. Anaerobic metabolism. Arch. Hydrobiol., 96, 354–362. [Google Scholar]
  • Frenzel P., 1990. The influence of Chironomid larvae on sediment oxygen microprofiles. Arch. Hydrobiol., 119, 427–437. [Google Scholar]
  • Gingras M.K., Lalond S.V., Amskold L. and Konhauser K.O., 2007. Wintering chironomids mine oxygen. Palaios, 22, 433–438. [CrossRef] [Google Scholar]
  • Hamburger K., Lindegaard C. and Dall P.C., 1996. The role of glycogen during the ontogenesis of Chironomus anthracinus (Chironomidae, Diptera). Hydrobiologia, 318, 51–59. [CrossRef] [Google Scholar]
  • Hansen K., Mouridsen S. and Kristensen E., 1998. The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in a shallow eutrophic lake sediment following a phytoplankton sedimentation. Hydrobiologia, 364, 65–74. [CrossRef] [Google Scholar]
  • Heinis F., Sweerts J.P. and Loopik E., 1994. Microenvironment of Chironomid larvae in the littoral and profundal zones of Lake Maarsseveen-I, the Netherlands. Arch. Hydrobiol., 130, 53–67. [Google Scholar]
  • Hempel E., 2011. Controlling factors of life cycle and distribution of chironomid key species in the mesotrophic Saidenbach Reservoir. PhD dissertation, Technische Universität Dresden, 149 p. [Google Scholar]
  • Hölker F. and Stief P., 2005. Adaptive behaviour of chironomid larvae (Chironomus riparius) in response to chemical stimuli from predators and resource density. Behav. Ecol. Sociobiol., 58, 256–263. [Google Scholar]
  • Int Panis L.I., Goddeeris B. and Verheyen R., 1996a. On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera). Hydrobiologia, 318, 61–67. [CrossRef] [Google Scholar]
  • Int Panis L.I., Goddeeris B. and Verheyen R.F., 1996b. On the spatial distribution and respiratory environment of benthic macroinvertebrates in ponds. Hydrobiologia, 319, 131–136. [CrossRef] [Google Scholar]
  • Jabłońska-Barna I., 2004. New species for Poland: Chironomus balatonicus Devai, Wulker et Scholl, 1983. In: Namiotko T. and Sywula T. (eds.), Biodiversity of Benthic Environments. BEL Studio, Gdańsk, 15 [in Polish]. [Google Scholar]
  • Jónasson P.M., 1972. Ecology and production of profundal benthos in relation to phytoplankton in Lake Esrom. Oikos Supplement, 14, 1–148. [Google Scholar]
  • Jónasson, P.M. and Kristiansen J., 1967. Primary and secondary production in Lake Esrom. Growth of Chironomus anthracinus in relation to seasonal cycles of phytoplankton and dissolved oxygen. Int. Rev. Ges. Hydrobiol., 52, 163–217. [CrossRef] [Google Scholar]
  • Kajak Z. and Dusoge K., 1971. The regularities of vertical distribution of benthos in bottom sediments of three Masurian lakes. Ekol. Pol., 19, 485–499. [Google Scholar]
  • Kornijów R., 1992. Seasonal migration by larvae of an epiphytic chironomid. Freshwat. Biol., 27, 85–89. [CrossRef] [Google Scholar]
  • Kornijów R., 1997. The impact of predation by perch on the size-structure of Chironomus larvae – The role of vertical distribution of the prey in the bottom sediments, and habitat complexity. Hydrobiologia, 342, 207–213. [CrossRef] [Google Scholar]
  • Kornijów R., 2013. A new sediment slicer for rapid sectioning of the uppermost sediment cores from marine and freshwater habitats. J. Paleolimnol., 49, 301–304. [CrossRef] [Google Scholar]
  • Kornijów R. and Moss B., 2002. Do night oxygen depletions contribute to the summer decline in abundance of zoobenthos in lake littoral? Int. Ver. Theor. Angew., 28, 1899–1901. [Google Scholar]
  • Krantzberg G., 1985. The influence of bioturbation on physical, chemical and biological parameters in aquatic environments – a review. Environ. Pollut. A, Ecol. Biol., 39, 99–122. [Google Scholar]
  • Lloyd M., 1967. Mean crowding. J. Anim. Ecol., 36, 1–30. [CrossRef] [Google Scholar]
  • Mathooko J.M., 1995. Vertical-distribution of macrozoobenthos and coarse particulate organic-matter in the sediment surface of a pool biotope in the Njoro River Kenya. Arch. Hydrobiol., 133, 95–106. [Google Scholar]
  • McLachlan A.J., 1977a. Density and distribution in laboratory populations of midge larvae (Chironomidae – Diptera). Hydrobiologia, 55, 195–199. [CrossRef] [Google Scholar]
  • McLachlan A.J., 1977b. Some effects of tube shape on feeding of Chironomus plumosus L. (Diptera: Chironomidae). J. Anim. Ecol., 46, 139–146. [CrossRef] [Google Scholar]
  • McLachlan A.J. and Cantrell M.A., 1976. Sediment development and its influence on distribution and tube structure of Chironomus plumosus L. (Chironomidae, Diptera) in a new impoundment. Freshwat. Biol., 6, 437–443. [CrossRef] [Google Scholar]
  • McLachlan A.J. and Ladle R.J., 2009. The evolutionary ecology of detritus feeding in the larvae of freshwater Diptera. Biol. Rev., 84, 133–141. [CrossRef] [Google Scholar]
  • Mermillod-Blondin F., 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. J. N. Am. Benthol. Soc., 30, 770–778. [CrossRef] [Google Scholar]
  • Nagell B. and Orrhage L., 1981. On the structure and function of the ventral tubuli of some Chironomus larvae (Diptera, Nematocera). Hydrobiologia, 78, 11–16. [CrossRef] [Google Scholar]
  • Nawrocka L. and Kobos J., 2011. The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive. Oceanologia, 53, 881–894. [CrossRef] [Google Scholar]
  • Olafsson J.S., 1992. Vertical microdistribution of benthic chironomid larvae within a section of the littoral zone of a lake. Neth. J. Aquat. Ecol., 26, 397–403. [CrossRef] [Google Scholar]
  • Penttinen O.P. and Holopainen I.J., 1995. Physiological energetics of a midge, Chironomus riparius Meigen (Insecta, Diptera): normoxic heat output over the whole life cycle and response of larva to hypoxia and anoxia. Oecologia, 103, 419–424. [CrossRef] [PubMed] [Google Scholar]
  • Persson A. and Svensson J.M., 2006. Vertical distribution of benthic community responses to fish predators, and effects on algae and suspended material. Aquat. Ecol., 40, 85–95. [CrossRef] [Google Scholar]
  • Pinder L.C.V., 1995. The habitats of chironomid larvae. In: Armitage P.S., Cranston S. and Pinder L.C.V. (eds.), Chironomidae: Biology and Ecology of Non-Biting Midges, Chapman & Hall, London-Madrid, 107–135. [Google Scholar]
  • Proulx I. and Hare L., 2014. Differences in feeding behaviour among Chironomus species revealed by measurements of sulphur stable isotopes and cadmium in larvae. Freshwat. Biol., 59, 73–86. [CrossRef] [Google Scholar]
  • Rossaro B., Solimini A., Lencioni V., Marziali L., Giacchini R. and Parenti P., 2007. The relationship between body size, pupal thoracic horn development and dissolved oxygen in Chironomini (Diptera: Chironomidae). Fundam. Appl. Limnol., 169, 331–339. [CrossRef] [Google Scholar]
  • Shiozawa D.K. and Barnes J.R., 1977. Microdistribution and population trends of larval Tanypus stellatus Coquillett and Chironomus frommeri Atchley and Martin (Diptera-Chironomidae) in Utah Lake, Utah. Ecology, 58, 610–618. [CrossRef] [Google Scholar]
  • Shobanow I.A., 1984. Vertical distribution of Chironomus plumosus L. larvae in the sediment of the former Volga riverbed in the Rybinsk Vodokhranilishche. Biol. Vnutr.Vod., 64, 35–38. [Google Scholar]
  • StatSoft Inc., 2011. STATISTICA (data analysis software system), version 10. www.statsoft.com. [Google Scholar]
  • Svensson J.M. and Leonardson L., 1996. Effects of bioturbation by tube-dwelling chironomid larvae on oxygen uptake and denitrification in eutrophic lake sediments. Freshwat. Biol., 35, 289–300. [CrossRef] [Google Scholar]
  • Takacs V. and Tokeshi M., 1994. Spatial distribution of two Chironomid species in the bottom sediment of Lough Neagh, Northern Ireland. Aquat. Insect, 16, 125–131. [Google Scholar]
  • Titmus G. and Badcock R.M., 1981. Distribution and feeding of larval Chironomidae in a gravel-pit lake. Freshwat. Biol., 11, 263–271. [CrossRef] [Google Scholar]
  • Tokeshi M., 1995. Species interaction and community structure. In: Armitage P.D., Cranston P.S. and Pinder L.C.V. (eds.), The Chironomidae. Biology and Ecology of Non-biting Midges, Chapman and Hall, Londyn-Madryt, 297–335. [Google Scholar]
  • Van de Bund W. and Groenendijk D., 1994. Seasonal dynamics and burrowing of littoral Chironomid larvae in relation to competition and predation. Arch. Hydrobiol., 132, 213–225. [Google Scholar]
  • Walshe B.M., 1947. Feeding mechanisms of Chironomus larvae. Nature, 160, 474–474. [CrossRef] [PubMed] [Google Scholar]
  • Walshe B.M., 1950. The function of haemoglobin in Chironomus plumosus under natural conditions. J. Exp. Biol., 27, 73–95. [Google Scholar]
  • Weber R.E., 1980. Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia. Am. Zool., 20, 79–101. [CrossRef] [Google Scholar]
  • Wolfram G., 1996. Distribution and production of chironomids (Diptera: Chironomidae) in a shallow, alkaline lake (Neusiedler See, Austria). Hydrobiologia, 318, 103–115. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.