Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 4, 2015
Page(s) 329 - 334
DOI https://doi.org/10.1051/limn/2015033
Published online 11 January 2016
  • Agrawal A.A., 2001. Phenotypic plasticity in the interactions and evolution of species. Science, 294, 321–326. [CrossRef] [PubMed] [Google Scholar]
  • Allen M.M., 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol., 4, 1–4. [CrossRef] [Google Scholar]
  • Chen M., Li J., Dai X., Sun Y. and Chen F., 2011. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology, 12, 187–192. [CrossRef] [Google Scholar]
  • Chu S., 1942. The influence of the mineral composition of the medium on the growth of planktonic algae: part I. methods and culture media. J. Ecol., 30, 284–325. [CrossRef] [Google Scholar]
  • Hairston N.G., Holtmeier C.L., Lampert W., Weider L.J., Post D.M., Fischer J.M., Cáceres C.E., Fox J.A. and Gaedke U., 2001. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution, 55, 2203–2214. [CrossRef] [PubMed] [Google Scholar]
  • Kessel M. and Eloff J.N., 1975. The ultrastructure and development of the colonial sheath of Microcystis marginata. Arch. Microbiol., 106, 209–214. [CrossRef] [PubMed] [Google Scholar]
  • Lampert W., Rothhaupt K.O. and Von Elert E., 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr., 39, 1543–1550. [CrossRef] [Google Scholar]
  • Li M., Zhu W., Dai X. and Li X., 2013a. Effects of linear alkylbenzene sulfonate on extracellular polysaccharide content and cells per particle of Microcystis aeruginosa and Scenedesmus obliquus. Fresen. Environ. Bull., 22, 1189–1194. [Google Scholar]
  • Li M., Zhu W., Gao L. and Lu L., 2013b. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J. Appl. Phycol. 25, 1023–1030. [CrossRef] [Google Scholar]
  • Li M., Zhu W. and Gao L., 2014. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environ. Manage., 53, 947–958. [CrossRef] [PubMed] [Google Scholar]
  • Liu Y., Wang W., Zhang M., Xing P. and Yang Z., 2010. PSII-efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux. Biochem. Syst. Ecol. 38, 292–299. [CrossRef] [Google Scholar]
  • Liu Y., Wang W., Geng L.L., Chen Y.F. and Yang Z., 2011. Polysaccharide content and morphology of Microcystis aeruginosa in response to changes in metabolic carbon flux. Fresen. Environ. Bull., 20, 1046–1050. [Google Scholar]
  • Lürling, M. 1999. Grazer-induced coenobial formation in clonal cultures of Scenendesmus obliquus (Chlorococcales, Chlorophyceae). J. Phycol., 35, 19–23. [CrossRef] [Google Scholar]
  • Lürling M., 2003. Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann. Limnol. - Int. J. Lim., 39, 85–101. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lürling M., 2006. Effects of a surfactant (FFD-6) on Scenedesmus morphology and growth under different nutrient conditions. Chemosphere, 62, 1351–1358. [CrossRef] [PubMed] [Google Scholar]
  • Lürling M. and van Donk E., 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr., 42, 783–788. [CrossRef] [Google Scholar]
  • Mulderij G., Mooij W.M. and Van Donk E., 2005. Allelopathic growth inhibition and colony formation of the green alga Scenedesmus obliquus by the aquatic macrophyte Stratiotes aloides. Aquat. Ecol., 39, 11–21. [CrossRef] [Google Scholar]
  • Pickett-Heaps J.D. and Staehelin L.A., 1975. The ultrastructure of Scenedesmus (Chlorophyceae). II. Cell division and colony formation. J. Phycol., 11, 186–202. [Google Scholar]
  • Plude J.L., Parker D.L., Schommer O.J., Timmerman R.J., Hagstrom S.A., Joers J.M. and Hnasko R., 1991. Chemical characterization of polysaccharide from the slime layer of the cyanobacterium Microcystis flos-aquae C3-40. Appl. Environ. Microbiol., 57, 1696–1700. [PubMed] [Google Scholar]
  • Trainor F., 1993. Cyclomorphosis in Scenedesmus subspicatus (Chlorococcales, Chlorophyta): stimulation of colony development at low temperature. Phycologia, 32, 429–433. [CrossRef] [Google Scholar]
  • van Holthoon F.L., van Beek T.A., Lürling M., Van Donk E. and De Groot A., 2003. Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone. Hydrobiologia, 491, 241–254. [CrossRef] [Google Scholar]
  • Wu Z., Deng P., Wu X., Luo S. and Gao Y., 2007. Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus. Hydrobiologia, 592, 465–474. [CrossRef] [Google Scholar]
  • Yang Z. and Kong F., 2013. Abiotic factors in colony formation: effects of nutrition and light on extracellular polysaccharide production and cell aggregates of Microcystis aeruginosa. Chin. J. Oceanol. Limnol. 31, 796–802. [CrossRef] [Google Scholar]
  • Yang Z. and Li J.J., 2007. Effects of Daphnia-associated infochemicals on the morphology and growth of Scenedesmus obliquus and Microcystis aeruginosa. J. Freshwater Ecol., 22, 249–253. [CrossRef] [Google Scholar]
  • Yang Z., Kong F.X., Shi X.L., Xing P. and Zhang M., 2007. Effects of Daphnia-associated infochemicals on the morphology, polysaccharides content and PSII-efficiency in Scenedesmus obliquus. Int. Rev. Hydrobiol., 92, 618–625. [CrossRef] [Google Scholar]
  • Yang Z., Kong F.X., Shi X.L., Zhang M., Xing P. and Cao H.S., 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J. Phycol. 44, 716–720. [CrossRef] [PubMed] [Google Scholar]
  • Yang Z., Liu Y., Ge J., Wang W., Chen Y.F. and Montagnes D.J.S., 2010. Aggregate formation and polysaccharide content of Chlorella pyrenoidosa Chick (Chlorophyta) in response to simulated nutrient stress. Bioresource Technol. 101, 8336–8341. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.