Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 2, 2015
Page(s) 179 - 188
DOI https://doi.org/10.1051/limn/2015012
Published online 27 April 2015
  • Berkenbusch K. and Rowden A.A., 1999. Factors influencing sediment turnover by the burrowing ghost shrimp Callianassa filholi (Decapoda: Thalassinidea). J. Exp. Mar. Biol. Ecol., 238, 283–292. [CrossRef] [Google Scholar]
  • Biles C.L., Paterson D.M., Ford R.B., Solan M. and Raffaelli D.G., 2002. Bioturbation, ecosystem functioning and community structure. Hydrol. Earth Syst. Sci., 6, 999–1005. [CrossRef] [Google Scholar]
  • Bouchard P., Chappaz R., Cavalli L. and Brun G., 1998. Influence of environmental variables on the growth of Leuciscus cephalus (Linnaeus 1766), in the River Durance, South-east France. Ann. Limnol. - Int. J. Lim., 34, 193–200. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brett J.R., 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool., 11, 99–113. [CrossRef] [Google Scholar]
  • Breukelaar A.W., Lammens E.H.R.R., Breteler J.G.P.K. and Tátrai I., 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentrations of nutrients and chlorophyll a. Freshw. Biol., 32, 113–121. [CrossRef] [Google Scholar]
  • Brown J.H., Gillooly J.F., Allen A.P., Savage V.M. and West G.B., 2004. Toward a metabolic theory of ecology. Ecology, 85, 1771–1789. [CrossRef] [Google Scholar]
  • Bubnová R., Hello G., Bénard P. and Geleyn J.-F., 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123, 515–535. [CrossRef] [Google Scholar]
  • Buisson L., Thuiller W., Lek S., Lim P. and Grenouillet G., 2008. Climate change hastens the turnover of stream fish assemblages. Glob. Change Biol., 14, 2232–2248. [CrossRef] [Google Scholar]
  • Butler D.R., 2012. The impact of climate change on patterns of zoogeomorphological influence: examples from the Rocky Mountains of the Western U.S.A. Geomorphology, 157–158, 183–191. [CrossRef] [Google Scholar]
  • Cadée G.C., 1979. Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea. Neth. J. Sea Res., 13, 441–456. [CrossRef] [Google Scholar]
  • Caradec S., Grossi V., Hulth S., Stora G. and Gilbert F., 2004. Macrofaunal reworking activities and hydrocarbon redistribution in an experimental sediment system. J. Sea Res., 52, 199–210. [CrossRef] [Google Scholar]
  • Chappaz R., Brun G. and Olivari G., 1989. Données nouvelles sur la biologie et l'écologie d'un poisson Cyprinidé peu étudié Chondrostoma toxostoma (Vallot 1936). Comparaison avec Chondrostoma nasus (L., 1766). C.R. Acad. Sci. Paris, 309, 181–186. [Google Scholar]
  • Cressie N.A.C., 1993. Statistics for Spatial Data: Revised Edition, Wiley, New York, 928 p. [Google Scholar]
  • De Nadaï-Monoury E., Lecerf A., Canal J., Buisson L., Laffaille P. and Gilbert F., 2013. A cost-effective method to quantify biological surface sediment reworking in streams. Hydrobiologia, 713, 115–125. [CrossRef] [Google Scholar]
  • De Vries P., 2012. Salmonid influence on rivers: a geomorphic fish tail. Geomorphology, 157–158, 66–74. [CrossRef] [Google Scholar]
  • Elliott J.M., 1981. Some aspects of thermal stress on freshwater teleosts. In: Pickering A.D. (ed.), Stress and Fish, Academic Press, London/New-York, 209–245. [Google Scholar]
  • Elliott J.M., Hurley M.A. and Allonby J.D., 1996. A functional model for maximum growth of immature stone loach, Barbatula barbatula, from three populations in north-west England. Freshw. Biol., 36, 547–554. [CrossRef] [Google Scholar]
  • Flecker A.S., 1996. Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology, 77, 1845–1854. [CrossRef] [Google Scholar]
  • Flecker A.S., 1997. Habitat modification by tropical fishes: environmental heterogeneity and the variability of interaction strength. J. N. Am. Benthol. Soc., 16, 286–295. [CrossRef] [Google Scholar]
  • Flecker A.S. and Taylor B.W., 2004. Tropical fishes as biological bulldozers: density effects on resource heterogeneity and species diversity. Ecology, 85, 2267–2278. [CrossRef] [Google Scholar]
  • Fry F.E.J., 1947. Effects of the environment on animal activity. University of Toronto Studies Biological Series, No. 55. Publ. Ontario Fisher. Res. Lab., 68, 1–62. [Google Scholar]
  • Gilbert F., Hulth S., Grossi V., Poggiale J.-C., Desrosiers G., Rosenberg R., Gerino M., François-Carcaillet F., Michaud E. and Stora G., 2007. Sediment reworking by marine benthic species froom Gullmar Fjord (Western Sweden): importance of faunal biovolume. J. Exp. Mar. Biol. Ecol., 348, 133–144. [CrossRef] [Google Scholar]
  • Gillooly J.F., Brown J.H., West G.B., Savage V.M. and Charnov E.L., 2001. Effects of size and temperature on metabolic rate. Science, 293, 2248–2251. [CrossRef] [PubMed] [Google Scholar]
  • Gottesfeld A.S., Hassan M.A., Tunnicliffe J.F. and Poirier R.W., 2004. Sediment dispersion in salmon spawning streams: the influence of floods and salmon redd construction. J. Am. Water Resour. Assoc., 40, 1071–1086. [CrossRef] [Google Scholar]
  • Gozlan R.E., 1998. Environmental biology and morphodynamics of the sofie Chondrostoma toxostoma (Cyprinidae), with emphasis on early development. PhD Thesis, University of Hertfordshire, UK. [Google Scholar]
  • Greig-Smith P., 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot., 16, 293–316. [Google Scholar]
  • Harborne A.R., 2013. The ecology, behaviour, and physiology of fishes on coral reef flats, and the potential impacts of climate change. J. Fish Biol., 83, 417–447. [CrossRef] [PubMed] [Google Scholar]
  • Hathaway E.S., 1927. The relation of temperature to the quantity of food consumed by fishes. Ecology, 8, 428–434. [CrossRef] [Google Scholar]
  • Heldman J.E., Gunnarsson J.S., Samuelsson G. and Gilbert F., 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J. Exp. Mar. Biol. Ecol., 407, 294–301. [CrossRef] [Google Scholar]
  • Hellawell J.M., 1971. The autecology of the chub, Squalius cephalus (L.), of the River Lugg and the Afon Llynfi. Freshwater Biol., 1, 369–387. [CrossRef] [Google Scholar]
  • Hijmans R.J. and van Etten J., 2013. Raster: Geographic data analysis and modeling. R package version 2.1–16. [Google Scholar]
  • Hollertz K. and Duchêne J.C., 2001. Burrowing behavior and sediment reworking in the heart urchin Brissopsis lyrifera Forbes (Spatangoida). Mar. Biol., 139, 951–957. [CrossRef] [Google Scholar]
  • Holtgrieve G.W. and Schindler D.E., 2010. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams. Ecology, 92, 373–385. [CrossRef] [PubMed] [Google Scholar]
  • Horoszewicz L., 1973. Lethal and “disturbing” temperatures in some fish species from lakes with normal and artificially elevated temperature. J. Fish Biol., 5, 165–181. [CrossRef] [Google Scholar]
  • Huet M., 1959. Profiles and biology of western European streams as related to fish management. Trans. Am. Fish. Soc., 88, 155–163. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Ieno E.N., Solan M., Batty P. and Pierce G.J., 2006. How biodiversity affects ecosystem functioning: roles of infaunal species richness, identity and density in the marine benthos. Mar. Ecol. Prog. Ser., 311, 263–271. [CrossRef] [Google Scholar]
  • Jeppesen E., Meerhoff M., Holmgren K., González-Bergonzoni I., Mello F.T., Declerck S.A.J., Meester L.D., Søndergaard M., Lauridsen T.L., Bjerring R., Conde-Porcuna J.M., Mazzeo N., Iglesias C., Reizenstein M., Malmquist H.J., Liu Z., Balayla D. and Lazzaro X., 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646, 73–90. [CrossRef] [Google Scholar]
  • Johnson M.F., Rice S.P. and Reid I., 2010. Topographic disturbance of subaqueous gravel substrates by signal crayfish (Pacifastacus leniusculus). Geomorphology, 123, 269–278. [CrossRef] [Google Scholar]
  • Jones C.G., Lawton J.H. and Shachak M., 1994. Organisms as ecosystem engineers. Oikos, 69, 373–386. [CrossRef] [Google Scholar]
  • Kassahn K.S., Crozier R.H., Pörtner H.O. and Caley M.J., 2009. Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol. Rev., 84, 277–292. [CrossRef] [Google Scholar]
  • Keith P., Persat H., Feunteun E. and Allardi J., 2011. Les poissons d'eau douce de France, Biotope & Museum National d'Histoire Naturelle, Paris, 552 p. [Google Scholar]
  • Logez M., Bady P. and Pont D., 2012. Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecol. Freshw. Fish, 21, 266–282. [CrossRef] [Google Scholar]
  • López-Olmeda J.F. and Sánchez-Vázquez F.J., 2011. Thermal biology of zebrafish (Danio rerio). J. Therm. Biol., 36, 91–104. [CrossRef] [Google Scholar]
  • Lyons J., Stewart J.S. and Mitro M., 2010. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A. J. Fish Biol., 77, 1867–1898. [CrossRef] [PubMed] [Google Scholar]
  • Maire O., Duchêne J.C., Gremare A., Malyuga V.S. and Meysman F.J.R., 2007. A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. J. Exp. Mar. Biol. Ecol., 343, 21–36. [CrossRef] [Google Scholar]
  • Maire O., Merchant J.N., Bulling M., Teal L.R., Grémare A., Duchêne J.C. and Solan M., 2010. Indirect effects of non-lethal predation on bivalve activity and sediment reworking. J. Exp. Mar. Biol. Ecol., 395, 30–36. [CrossRef] [Google Scholar]
  • Mann R.H.K., 1976. Observations on the age, growth, reproduction and food of the chub Squalius cephalus (L.) in the River Stour, Dorset. J. Fish Biol., 8, 265–288. [CrossRef] [Google Scholar]
  • Marmonier P., Archambaud G., Belaidi N., Bougon N., Breil P., Chauvet E., Claret C., Cornut J., Datry T., Dole-Olivier M.J., Dumont B., Flipo N., Foulquier A., Gerino M., Guilpart A., Julien F., Maazouzi C., Martin D., Mermillod-Blondin F., Montuelle B., Namour P., Navel S., Ombredane D., Pelte T., Piscart C., Pusch M., Stroffek S., Robertson A., Sanchez-Perez J.M., Sauvage S., Taleb A., Wantzen M. and Vervier P., 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Ann. Limnol. - Int. J. Lim., 48, 253–266. [CrossRef] [EDP Sciences] [Google Scholar]
  • Matsuzaki S.-I.S., Usio N., Takamura N. and Washitani I., 2009. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia, 158, 673–686. [CrossRef] [PubMed] [Google Scholar]
  • Montgomery D.R., Buffington J.M., Peterson N.P., Schuett-Hames D. and Quinn T.P., 1996. Stream-bed scour, egg burial depth, and the influence of salmonid spawning on bed surface mobility and embryo survival. Can. J. Fish. Aquat. Sci., 53, 1061–1070. [CrossRef] [Google Scholar]
  • Montserrat F., Van Colen C., Provoost P., Milla M., Ponti M., Van den Meersche K., Ysebaert T. and Herman P.M.J., 2009. Sediment segregation by biodiffusing bivalves. Estuar. Coast. Shelf S., 83, 379–391. [CrossRef] [Google Scholar]
  • Moore J.W., 2006. Animal ecosystem engineers in streams. BioScience, 56, 237–246. [CrossRef] [Google Scholar]
  • Moore J.W., Schindler D.E., Carter J.L., Fox J.M., Griffiths J. and Holtgrieve G.W., 2007. Biotic control of stream ecosystem fluxes: spawning salmon drive nutrient and matter export. Ecology, 88, 1278–1291. [CrossRef] [PubMed] [Google Scholar]
  • Orvain F. and Sauriau P.-G., 2002. Environmental and behavioural factors affecting activity in the intertidal gastropod Hydrobia ulvae. J. Exp. Mar. Biol. Ecol., 272, 191–216. [CrossRef] [Google Scholar]
  • Orvain F., Sauriau P.G., Sygut A., Joassard L. and Le Hir P., 2004. Interacting effects of Hydrobia ulvae bioturbation and microphytobenthos on the erodibility of mudflat sediments. Mar. Ecol. Prog. Ser., 278, 205–223. [CrossRef] [Google Scholar]
  • Ouellette D., Desrosiers G., Gagne J.P., Gilbert F., Poggiale J.C., Blier P.U. and Stora G., 2004. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar. Ecol. Prog. Ser., 266, 185–193. [CrossRef] [Google Scholar]
  • Persson A. and Svensson J.M., 2006a. Effects of benthivorous fish on biogeochemical processes in lake sediments. Freshw. Biol., 51, 1298–1309. [CrossRef] [Google Scholar]
  • Persson A. and Svensson J.M., 2006b. Vertical distribution of benthic community responses to fish predators, and effects on algae and suspended material. Aquat. Ecol., 40, 85–95. [CrossRef] [Google Scholar]
  • Peterson D.P. and Foote C.J., 2000. Disturbance of small-stream habitat by spawning sockeye salmon in Alaska. Trans. Am. Fish. Soc., 129, 924–934. [CrossRef] [Google Scholar]
  • Pledger A.G., Rice S.P. and Millett J., 2014. Reduced bed material stability and increased bedload transport caused by foraging fish: a flume study with juvenile Barbel (Barbus barbus). Earth Surf. Proc. Land., 39, 1500–1513. [Google Scholar]
  • Pringle C.M., Blake G.A., Covich A.P., Buzby K.M. and Finley A., 1993. Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia, 93, 1–11. [CrossRef] [PubMed] [Google Scholar]
  • R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Reise K., 2002. Sediment mediated species interactions in coastal waters. J. Sea Res., 48, 127–141. [CrossRef] [Google Scholar]
  • Roozen F.C.J.M., Lurling M., Vlek H., Kraan E.A.J.V.D.P., Ibelings B.W. and Scheffer M., 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshw. Biol., 52, 977–987. [CrossRef] [Google Scholar]
  • Scheirer C., Ray W. and Hare N., 1976. Analysis of ranked data derived from completely randomized factorial designs. Biometrics, 32, 429–434. [CrossRef] [PubMed] [Google Scholar]
  • Sevault F., Somot S., Alias A., Dubois C., Lebeaupin-Brossier C., Nabat P., Adloff F., Deque M. and Decharme B., 2014. A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus A, 66, 23967. [CrossRef] [Google Scholar]
  • Shirakawa H., Yanai S. and Goto A., 2013. Lamprey larvae as ecosystem engineers: physical and geochemical impact on the streambed by their burrowing behavior. Hydrobiologia, 701, 313–322. [CrossRef] [Google Scholar]
  • Souchon Y. and Tissot L., 2012. Synthesis of thermal tolerances of the common freshwater fish species in large Western Europe rivers. Knowl. Manag. Aquat. Ecosyst., 405, 03. [CrossRef] [EDP Sciences] [Google Scholar]
  • Statzner B., 2012. Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology, 157–158, 49–65. [CrossRef] [Google Scholar]
  • Statzner B. and Peltret O., 2006. Assessing potential abiotic and biotic complications of crayfish-induced gravel transport in experimental streams. Geomorphology, 74, 245–256. [CrossRef] [Google Scholar]
  • Statzner B. and Sagnes P., 2008. Crayfish and fish as bioturbators of streambed sediments: assessing joint effects of species with different mechanistic abilities. Geomorphology, 93, 267–287. [CrossRef] [Google Scholar]
  • Statzner B., Fièvet E., Champagne J.-Y., Morel R. and Herouin E., 2000. Crayfish as geomorphic agents and ecosystem engineers: biological behavior affects sand and gravel erosion in experimental streams. Limnol. Oceanogr., 45, 1030–1040. [CrossRef] [Google Scholar]
  • Statzner B., Peltret O. and Tomanova S., 2003a. Crayfish as geomorphic agents and ecosystem engineers: effect of a biomass gradient on baseflow and floodinduced transport of gravel and sand in experimental streams. Freshw. Biol., 48, 147–163. [CrossRef] [Google Scholar]
  • Statzner B., Sagnes P., Champagne J.-Y. and Viboud S., 2003b. Contribution of benthic fish to the patch dynamics of gravel and sand transport in streams. Water Resour. Res., 39, 1–17. [CrossRef] [Google Scholar]
  • White D.S., Klahr P.C. and Robbins J.A., 1987. Effects of temperature and density on sediment reworking by Stylodrilus heringianus (Oligochaeta: Lumbriculidae). J. Great Lakes Res., 13, 147–156. [CrossRef] [Google Scholar]
  • Zhang L., Liao Q., He W., Shang J. and Fan C., 2013. The effects of temperature on oxygen uptake and nutrient flux in sediment inhabited by molluscs. J. Limnol., 72, 13–20. [CrossRef] [Google Scholar]
  • Zhang L., Shang J., He W., You B. and Fan C., 2014. The role of tubificid worms (Limnodrilus hoffmeisteri) in sediment resuspension: a microcosm study. Ann. Limnol. - Int. J. Lim., 50, 253–260. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zhang Y., Richardson J.S. and Negishi J.N., 2004. Detritus processing, ecosystem engineering and benthic diversity: a test of predator–omnivore interference. J. Anim. Ecol., 73, 756–766. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.