Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 51, Number 1, 2015
Page(s) 79 - 88
DOI https://doi.org/10.1051/limn/2015002
Published online 13 March 2015
  • Anderson M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol., 26, 32–46. [Google Scholar]
  • Bärlocher F., 2007a. Leaching. In: Graca M.A.S., Bärlocher F. and Gessner M.O. (eds.), Methods to Study Litter Decomposition. A Practical Guide, Springer, Dordrecht, The Netherlands, 33–36. [Google Scholar]
  • Bärlocher F., 2007b. Leaf mass loss estimated by litter bag technique. In: Graca M.A.S., Bärlocher F. and Gessner M.O. (eds.), Methods to Study Litter Decomposition. A Practical Guide, Springer, Dordrecht, The Netherlands, 37–42. [Google Scholar]
  • Bates D., Maechler M. and Bolker B., 2013. lme4: linear mixed-effects models using S4 classes. R package version 0.999999-2, Available online at: http://CRAN.R-project.org/package=lme4. [Google Scholar]
  • Bedford A.P., 2004. A modified litter bag design for use in lentic habitats. Hydrobiologia, 529, 187–193. [CrossRef] [Google Scholar]
  • Bedford A.P., 2005. Decomposition of Phragmites australis litter in seasonally flooded and exposed areas of a managed reedbed. Wetlands, 25, 713–720. [CrossRef] [Google Scholar]
  • Bedford A.P. and Powell I., 2005. Long-term changes in invertebrates associated with the litter of Phragmites australis in a managed reedbed. Hydrobiologia, 549, 267–285. [CrossRef] [Google Scholar]
  • Bohman I.M. and Herrmann J., 2006. The timing of winter-growing shredder species and leaf litter turnover rate in an oligotrophic lake, SE Sweden. Hydrobiologia, 556, 99–108. [CrossRef] [Google Scholar]
  • Boyero L., Ramirez A., Dudgeon D. and Pearson R.G., 2009. Are tropical streams really different? J. N. Am. Benthol. Soc., 28, 397–403. [CrossRef] [Google Scholar]
  • Boyero L., Pearson R.G., Gessner M.O., Barmuta L.A., Ferreira V., Graca M.A.S., Dudgeon D., Boulton A.J., Callisto M., Chauvet E., Helson J.E., Bruder A., Albarino R.J., Yule C.M., Arunachalam M., Davis J.N., Figueroa R., Flecker A.S., Ramirez A., Death R.G., Iwata T., Mathooko J.M., Marthuriau C., Ives J.F.G., Moretti M.S., Jingut T., Lamothe S., M'Erimba C., Ratnarajah L., Schindler M.H., Castela J., Buria L.M., Cornejo A., Villanueva V.D. and West D.C., 2011. Global experiment suggests warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett., 14, 289–294. [CrossRef] [PubMed] [Google Scholar]
  • Crossetti L.O., Stenger-Kovács C. and Padisák J., 2013. Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia, 716, 87–101. [CrossRef] [Google Scholar]
  • Cummins K.W., 1973. Trophic relations of aquatic insects. Annu. Rev. Entom., 18, 183–205. [CrossRef] [Google Scholar]
  • Dobson M., 1991. An assessment of mesh bags and plastic leaf traps as tools for studying macroinvertebrate assemblages in natural leaf packs. Hydrobiologia, 222, 19–28. [CrossRef] [Google Scholar]
  • Dobson M., Hildrew A.G., Ibbotson A. and Garthwaite J., 1992. Enhancing litter retention in streams. Do alter hydraulics and habitat area confound field experiments? Freshwat. Biol., 28, 71–79. [CrossRef] [Google Scholar]
  • Dudgeon D. and Wu K.K.Y., 1999. Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Arch. Hydrobiol., 146, 65–82. [Google Scholar]
  • Dufrene M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Eggers T.O. and Martens A., 2001. Bestimmungsschlüssel der Süßwasser-Amphipoda (Crustacea) Deutschlands. Lauterbornia Heft, 42, 68. [Google Scholar]
  • Erős T., Specziár A. and Bíró P., 2009. Assessing fish assemblages in reed habitats of a large shallow lake – a comparison between gillnet and electrofishing. Fish. Res., 96, 70–76. [CrossRef] [Google Scholar]
  • Gessner M.O. and Chauvet E., 2002. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl., 12, 498–510. [CrossRef] [Google Scholar]
  • Gloer P. and Meier-Brook C., 1994. Süsswassermollusken. Ein Bestimmungsschlussel für die Bundesrepublik Deutschland, University of Hamburg, Tübingen. [Google Scholar]
  • Graca M.A.S., Bärlocher F. and Gessner M.O., 2007. Methods to Study Litter Decomposition. A Practical Guide, Springer, Dordrecht, The Netherlands, 329 p. [Google Scholar]
  • Hajnal É. and Padisák J., 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia, 599, 227–237. [CrossRef] [Google Scholar]
  • Heard S.B., Schultz G.A., Ogden C.B., and Griesel T.C., 1999. Mechanical abrasion and organic matter processing in an Iowa stream. Hydrobiologia, 400, 179–186. [CrossRef] [Google Scholar]
  • Istvánovics V., Clement A., Somlyódy L., Specziár A., Tóth L.G. and Padisák J., 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia, 581, 305–318. [CrossRef] [Google Scholar]
  • Jonsson M. and Malmqvist B., 2000. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos, 89, 519–523. [CrossRef] [Google Scholar]
  • Józsa J., Rákóczi L. and Krámer T., 2012. Balaton Lake in Hungary. In: Bengtsson L. and Herschy R.W. (eds.), Encyclopedia of Lakes and Reservoirs, Springer, Netherlands, 91–95. [Google Scholar]
  • Kennedy E., Leff L.G. and deSzalay F.A., 2012. Herbiciding Phragmites australis: effects on litter decomposition, microbial biomass, and macroinvertebrate communities. Fund. Appl. Limn., 180, 309–319. [CrossRef] [Google Scholar]
  • Klemmer A.J. and Richardson J.S., 2013. Quantitative gradient of subsidies reveals a threshold in community-level trophic cascades. Ecology, 94, 1920–1926. [CrossRef] [PubMed] [Google Scholar]
  • McArdle B.H. and Anderson M.J., 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, 82, 290–297. [CrossRef] [Google Scholar]
  • Moog O., 1995. Fauna Aquatica Austriaca. 1. Auflage, Wasserwirtschafts – Kataster, Bundesministerium für Land- und Forstwirtschaft, Wien. [Google Scholar]
  • Moog O., 2002. Fauna Aquatica Austriaca, Edition 2002. – Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien. [Google Scholar]
  • Muskó I.B., Bence M. and Balogh C., 2008. Occurrence of a new Ponto-Caspian invasive species, Cordylophora caspia (Pallas, 1771) (Hydrozoa: Clavidae) in Lake Balaton (Hungary). Acta Zool. Acad. Svien. Hung., 54, 169–179. [Google Scholar]
  • Nesemann H. and Neubert E., 1999. Annelida, Clitellata, Süsswasserfauna von Mitteleuropa 6/2, Spektrum Akademisher Verlag GmbH, Heidelberg. [Google Scholar]
  • Newman R., 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. North Am. Benthol. Soc., 10, 89–114. [CrossRef] [Google Scholar]
  • Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H. and Wagner H., 2013. Vegan: community ecology package. R package version 2.0-8, Available online at: http://CRAN.R-project.org/package=vegan. [Google Scholar]
  • Padisák J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Lake Balaton, Hungary) – a dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol., 80, 217–230. [CrossRef] [Google Scholar]
  • Padisák J. and Reynolds C.S., 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia, 384, 41–53. [CrossRef] [Google Scholar]
  • Padisák J., Borics G., Grigorszky I. and Soróczki-Pintér É., 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia, 553, 1–14. [CrossRef] [Google Scholar]
  • Podani J., 2000. Introduction into the Exploration of Multivariate Biological Data, Backhuys Publisher, Leiden, The Netherlands. [Google Scholar]
  • Polunin N.V.C., 1982. Processes contributing to the decay of reed (Phragmites australis) litter in fresh waters. Arch. Hydrobiol., 94, 182–209. [Google Scholar]
  • Quintino V., Sangiorgio F., Ricardo F., Mamede R., Pires A., Freitas R., Rodrigues A.M. and Basset A., 2009. In situ experimental study of reed leaf decomposition along full salinity gradient. Estuar. Cost. Self Sci., 85, 497–506. [CrossRef] [Google Scholar]
  • R Core Team, 2013. R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, Available online at: http://www.R-project.org/. [Google Scholar]
  • Richardson J.S., 1992. Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in montane stream. Freshwat. Biol., 27, 169–176. [CrossRef] [Google Scholar]
  • Richnovszky A. and Pintér L., 1979. Vizicsigák és kagylók (Mollusca) kishatározója. Vízügyi Hidrobiologia 6., Vízügyi Dokumentációs és Tájékoztatási Iroda, Budapest, 206 p. [Google Scholar]
  • Roberts D.W., 2012. labdsv: ordination and multivariate analysis for ecology. R package version 1.5-0, Available online at: http://CRAN.R-project.org/package=labdsv. [Google Scholar]
  • Rowe L. and Richardson J.S., 2001. Community responses to experimental food depletion: resource tracking by stream invertebrates. Oecologia, 129, 473–480. [CrossRef] [PubMed] [Google Scholar]
  • Sangiorgio F., Fonnesu A., Pinna M., Sebatta L. and Basset A., 2006. Influence of drought and abiotic factors on Phragmites australis leaf decomposition in the river Pula, Sardinia, Italy. J. Freshwat. Ecol., 21, 411–420. [CrossRef] [Google Scholar]
  • Schindler M.H. and Gessner M.O., 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology, 90, 1641–1649. [CrossRef] [PubMed] [Google Scholar]
  • Schmidlin S., Schmera D. and Baur B., 2012. Alien molluscs affect the composition and diversity of native macroinvertebrates in a sandy flat of Lake Neuchatel, Switzerland. Hydrobiologia, 679, 233–249. [CrossRef] [Google Scholar]
  • Sipkay C., Hufnagel L., Révész A. and Petrányi G., 2007. Seasonal dynamics of an aquatic macroinvertebrate assembly (Hydromorphological case study of Lake Balaton No2). Appl. Ecol. Environ. Res., 5, 63–78. [CrossRef] [Google Scholar]
  • Sychra J., Zdenek A. and Petrivalska K., 2010. Distribution and diversity of littoral macroinvertebrates within extensive reed beds of a lowland pond. Ann. Limnol. - Int. J. Lim., 46, 281–289. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tiegs S.D., Akinwole P.O. and Gessner M.O., 2009. Litter decomposition across multiple spatial scales in stream networks. Oecologia, 161, 343–351. [CrossRef] [PubMed] [Google Scholar]
  • Tóth V. and Szabó K., 2012. Morphometric structural analysis of Phragmites australis stands in Lake Balaton. Ann. Limnol. - Int. J. Lim., 48, 241–251. [CrossRef] [EDP Sciences] [Google Scholar]
  • van Dokkum H.P., Slijkerman D.M.E., Rossi L. and Costantini M.L., 2002. Variation in the decomposition of Phragmites australis litter in a monomictic lake: the role of gammarids. Hydrobiologia, 482, 69–77. [CrossRef] [Google Scholar]
  • Varga I., 2001. Macroinvertebrates in reed litter. Int. Rev. Hydrobiol., 86, 573–585. [CrossRef] [Google Scholar]
  • Varga I., 2003. Structure and changes of macroinvertebrate community colonizing decomposing rhizome litter of common reed at Lake Fertő/Neusiedler See (Hungary). Hydrobiologia, 506–509, 413–420. [CrossRef] [Google Scholar]
  • Várkuti A., Kovács K., Stenger-Kovács C., and Padisák J., 2008. Environment consciousness of permanent inhabitants in shoreline cities and villages of Lake Balaton with special attention to issues connected to global climate change. Hydrobiologia, 599, 249–257. [CrossRef] [Google Scholar]
  • V.-Balogh K., Présing M., Vörös L. and Tóth N., 2006. A study of the decomposition of reed (Phragmites australis) as a possible source of aquatic humic substances by measuring the natural abundance of stable carbon isotopes. Int. Rev. Hydrobiol., 91, 15–28. [CrossRef] [Google Scholar]
  • Zapala M.A. and Schork N.J., 2006. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. USA, 103, 19430–19435. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.