Free Access
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 4, 2014
Page(s) 335 - 346
Published online 19 November 2014
  • Arai H. and Fukushima T., 2012. Silicon budget of eutrophic Lake Kasumigaura, Japan. J. Soils Sediments, 12, 1501–1507. [CrossRef] [Google Scholar]
  • Arai H., Fukushima T. and Komatsu K., 2012. Increase in silicon concentrations and release from suspended solids and bottom sediments in Lake Kasumigaura, Japan. Limnology, 13, 81–95. [CrossRef] [Google Scholar]
  • Bailey-Watts A.E., 1976a. Planktonic diatoms and some diatom-silica relations in a shallow eutrophic Scottish loch. Freshw. Biol., 6, 69–80. [CrossRef] [Google Scholar]
  • Bailey-Watts A.E., 1976b. Planktonic diatoms and silica in Loch Leven, Kinross, Scotland: a one month silica budget. Freshw. Biol., 6, 203–213. [CrossRef] [Google Scholar]
  • Barbiero R.P., Tuchman M.L., Warren G.J., and Rockwell D.C., 2002. Evidence of recovery from phosphorus enrichment in Lake Michigan. Can. J. Fish. Aquat. Sci., 59, 1639–1647. [CrossRef] [Google Scholar]
  • Bormans M. and Webster I.T., 1999. Modelling the spatial and temporal variability of diatoms in the River Murray. J. Plankton Res., 21, 581–598. [CrossRef] [Google Scholar]
  • Brzezinski M.A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol., 21, 347–357. [Google Scholar]
  • Callies U., Scharfe M. and Ratto M., 2008. Calibration and uncertainty analysis of a simple model of silica-limited diatom growth in the Elbe River. Ecol. Modell., 213, 229–244. [CrossRef] [Google Scholar]
  • Conley D.J., Kilham S.S. and Theriot E., 1989. Differences in silica content between marine and freshwater diatoms. Limnol. Oceanogr., 34, 205–213. [CrossRef] [Google Scholar]
  • Conley D.J., Sommer M., Meunier J.D., Kaczorek D. and Saccone L., 2006. Silicon in the terrestrial biogeosphere. In: Ittekkot V., Unger D., Humborg C. and Tac An N. (eds.), The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems, Island, Washington, DC, 13–28. [Google Scholar]
  • Ferris J.A. and Lehman J.T., 2007. Interannual variation in diatom bloom dynamics: roles of hydrology, nutrient limitation, sinking, and whole lake manipulation. Water Res., 41, 2551–2562. [CrossRef] [PubMed] [Google Scholar]
  • Foundation of River and Watershed Environment Management, 2007. Research of the runoff mechanism for silicate and other dissolved inorganic matters in river (in Japanese). [Google Scholar]
  • Fukushima T., 1984. Studies on the change characteristics and management of water quality in a shallow lake (in Japanese). [Google Scholar]
  • Fukushima T., Kawamura S., Seki T., Onda Y., Imai A. and Matsushige K., 2005. Why has Lake Kasumigaura become turbid? Verh. Int. Verein. Limnol., 29, 732–737. [Google Scholar]
  • Fukushima T., Kamiya K., Onda Y., Imai A. and Matsushige K., 2010. Long-term changes in lake sediments and their influences on lake water quality in Japanese shallow lakes. Fund. App. Limnol., 177, 177–188. [CrossRef] [Google Scholar]
  • Gibson C.E., 1984. Sinking rates of planktonic diatoms in an unstratified lake: a comparison of field and laboratory observations. Freshw. Biol., 14, 631–638. [CrossRef] [Google Scholar]
  • Harashima A., Kimoto T., Wakabayashi T. and Toshiyasu T., 2006. Verification of the silica deficiency hypothesis based on biogeochemical trends in the aquatic continuum of Lake Biwa – Yodo River – Seto Inland Sea, Japan. AMBIO, 35, 36–42. [PubMed] [Google Scholar]
  • Havens K.E., Fukushima T., Xie P., Iwakuma T., James R.T., Takamura N., Hanazato T. and Yamamoto T., 2001. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environ. Pollut., 111, 263–272. [CrossRef] [PubMed] [Google Scholar]
  • Humborg C., Ittekkot V., Cociasu A. and Bodungen B., 1997. Effect of Danube river dam on Black sea biogeochemistry and ecosystem structure. Nature, 386, 385–388. [CrossRef] [Google Scholar]
  • Imai A., Fukushima T., and Matsushige K., 1999. Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Can. J. Fish. Aquat. Sci., 56, 1929–1937. [CrossRef] [Google Scholar]
  • Ittekkot V., Humborg C. and Schafer P., 2000. Hydrological alterations and marine biogeochemistry: a silicate issue? Bioscience, 50, 776–782. [CrossRef] [Google Scholar]
  • Köhler J., Hilt S., Adrian R., Nicklisch A., Kozerski H.P. and Walz N., 2005. Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshw. Biol., 50, 1639–1650. [Google Scholar]
  • Koszelnik P. and Tomaszek J.A., 2008. Dissolved silica retention and its impact on eutrophication in a complex of mountain reservoirs. Water Air Soil Pollut., 189, 189–198. [CrossRef] [Google Scholar]
  • Kristiansen S. and Hoell E.E., 2002. The importance of silicon for marine production. Hydrobiologia, 484, 21–31. [CrossRef] [Google Scholar]
  • Li M., Xu K., Watanabe M. and Chen Z., 2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuar. Coast. Shelf. Sci., 71, 3–12. [CrossRef] [Google Scholar]
  • Matsuoka Y., 1984. An eutrophication model of Lake Kasumigaura. Res. Rep. Natl. Inst. Environ. Stud. Jpn., 54, 53–242 (in Japanese with English abstract). [Google Scholar]
  • Muraoka K. and Fukushima T., 1986. On the box model for prediction of water-quality in eutrophic lakes. Ecol. Modell., 31, 221–236. [CrossRef] [Google Scholar]
  • Nagai M., Sugiyama M. and Hori T., 2001. Environmental chemistry of rivers and lakes, Part VII. Fractionation by calculation of suspended particulate matter in Lake Biwa into three types of particles of different origins. Limnology, 2, 147–155. [CrossRef] [Google Scholar]
  • NIES, 2013. Lake Kasumigaura Database. Available online at:, Cited on 16 August 2013. [Google Scholar]
  • Officer C.B. and Ryther J.H., 1980. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser., 3, 83–91. [CrossRef] [Google Scholar]
  • Ptacnik R., Andersen T., and Tamminen T., 2010. Performance of the Redfield Ratio and a family of nutrient limitation indicators as thresholds for phytoplankton N vs. P limitation. Ecosystems, 13, 1201–1214. [CrossRef] [Google Scholar]
  • Redfield A.C., Ketchum B.H. and Richards F.A., 1963. The influence of organismson the composition of sea-water. In: Hill M.N. (ed.), The Sea, Volume 2: The Composition of Sea-Water Comparative and Descriptive Oceanography, Harvard University Press, Cambridge, 26–77. [Google Scholar]
  • Reynolds C.S., 1973. The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake. Freshw. Biol., 3, 89–110. [CrossRef] [Google Scholar]
  • Scavia D. and Fahnenstiel G.L., 1987. Dynamics of Lake Michigan phytoplankton: mechanisms controlling epilmnetic communities. J. Great Lakes Res., 13, 103–120. [CrossRef] [Google Scholar]
  • Schelske C.L., 1985. Biogeochemical silica mass balances in Lake Michigan. Biogeochemistry, 1, 197–218. [CrossRef] [Google Scholar]
  • Schelske C.L., 1999. Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In: Stoermer E.F. and Smol J.P. (eds.), The Diatoms: Applications for the Environmental and Earth Science. Cambridge University, Cambridge, 73–84. [Google Scholar]
  • Seki T., Fukushima T., Imai A. and Matsushige K., 2006. Turbidity increase and sediment resuspension in Lake Kasumigaura. Doboku Gakkai Ronbunshu G, 62, 122–134 (in Japanese with English abstract). [CrossRef] [Google Scholar]
  • Shatwell T., Köhler J. and Nicklisch A., 2013. Temperature and photoperiod interactions with silicon-limited growth and competition of two diatoms. J. Plankton Res., 35, 957–971. [CrossRef] [Google Scholar]
  • Sicko-Goad L., Schelske C.L. and Stoermer E.F., 1984. Estimation of intracellular carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnol. Oceanogr., 29, 1170–1178. [CrossRef] [Google Scholar]
  • Sommer U. and Stabel H.H., 1983. Silicon consumption and population density changes of dominant planktonic diatoms in Lake Constance. J. Ecol., 71, 119–130. [CrossRef] [Google Scholar]
  • Takamura N., Otsuki A., Aizaki M. and Nojiri Y., 1992. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Arch. Hydrobiol., 124, 129–148. [Google Scholar]
  • Takano K. and Hino S., 1996. The effect of silicon concentration on replacement of dominant diatom species in a silicon-rich Lake. Jpn. J. Limnol., 57, 153–162. [CrossRef] [Google Scholar]
  • Teodoru C., Dimopoulos A. and Wehrli B., 2006. Biogenic silica accumulation in the sediments of Iron Gate I Reservoir on the Danube River. Aquat. Sci., 68, 469–481. [CrossRef] [Google Scholar]
  • Titman D. and Kilham P., 1976. Sinking in freshwater phytoplankton: some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanogr., 21, 409–417. [CrossRef] [Google Scholar]
  • Tomioka N., Imai A., and Komatsu K., 2011. Effect of light availability on Microcystis aeruginosa blooms in shallow hypereutrophic Lake Kasumigaura. J. Plankton Res., 33, 1263–1273. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.