Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 3, 2014
Page(s) 253 - 260
DOI https://doi.org/10.1051/limn/2014013
Published online 22 August 2014
  • Amaro T.P.F., Duineveld G.C.A., Bergman M.J.N., Witbaard R. and Scheffer M., 2007. The consequences of changes in abundance of Callianassa subterranea and Amphiura filiformis on sediment erosion at the Frisian Front (south-eastern North Sea). Hydrobiologia, 589, 273–285. [CrossRef] [Google Scholar]
  • Bale A.J., Widdows J., Harris C.B. and Stephens J.A., 2006. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Cont. Shelf Res., 26, 1206–1216. [Google Scholar]
  • Bloesch J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshw. Res., 46, 295–304. [Google Scholar]
  • Cai Y., Gong Z. and Qin B., 2010. Community structure and diversity of macrozoobenthos in Lake Taihu, a large shallow eutrophic lake in China. Biodivers. Sci., 18, 50–59. [Google Scholar]
  • Ciutat A., Weber O., Gérino M. and Boudou A., 2006. Stratigraphic effects of tubificids in freshwater sediments: a kinetic study based on X-ray images and grain-size analysis. Acta Oecol., 30, 228–237. [CrossRef] [Google Scholar]
  • Couceiro F., Fones G.R., Thompson C.E.L., Statham P.J., Sivyer D.B., Parker R., Kelly-Gerreyn B.A. and Amos C.L., 2013. Impact of resuspension of cohesive sediments at the Oyster Grounds (North Sea) on nutrient exchange across the sediment–water interface. Biogeochemistry, 113, 37–52. [CrossRef] [Google Scholar]
  • Dafoe L.T., Rygh A.L., Yang B., Gingras M.K. and Pemberton S.G., 2011. A new technique for assessing tubificid burrowing activities, and recognition of biogenic grading formed by these oligochaetes. Palaios, 26, 66–80. [CrossRef] [Google Scholar]
  • Davis R.B., 1974a. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr., 19, 466–488. [Google Scholar]
  • Davis R.B., 1974b. Tubificids alter profiles of redox potential and pH in profundal lake sediment. Limnol. Oceanogr., 19, 342–346. [Google Scholar]
  • de Lucas Pardo M.A., Bakker M., van Kessel T., Cozzoli F. and Winterwerp J.C., 2013. Erodibility of soft freshwater sediments in Markermeer: the role of bioturbation by meiobenthic fauna. Ocean Dyn., 63, 1137–1150. [Google Scholar]
  • de Vicente I., Cruz-Pizarro L. and Rueda F.J., 2010. Sediment resuspension in two adjacent shallow coastal lakes: controlling factors and consequences on phosphate dynamics. Aquat. Sci., 72, 21–31. [Google Scholar]
  • Evans R.D., 1994. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia, 284, 5–12. [CrossRef] [Google Scholar]
  • Fernandes S., Sobral P. and Costa M.H., 2006. Nereis diversicolor effect on the stability of cohesive intertidal sediments. Aquat. Ecol., 40, 567–579. [CrossRef] [Google Scholar]
  • Flecker A.S., 1996. Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology, 77, 1845–1854. [CrossRef] [Google Scholar]
  • Fukuhara H., 1987. The effect of tubificids and chironomids on particle redistribution of lake sediment. Ecol. Res., 2, 255–264. [Google Scholar]
  • Grabowski R.C., Droppo I.G. and Wharton G., 2011. Erodibility of cohesive sediment: the importance of sediment properties. Earth-Sci. Rev., 105, 101–120. [Google Scholar]
  • Hu C., Hu W., Zhang F., Hu Z., Li X. and Chen Y., 2006. Sediment resuspension in the Lake Taihu, China. Chin. Sci. Bull., 51, 731–737. [Google Scholar]
  • James W.F., Best E.P. and Barko J.W., 2004. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system? Hydrobiologia, 515, 193–201. [CrossRef] [Google Scholar]
  • Kalnejais L.H., Martin W.R. and Bothner M.H., 2010. The release of dissolved nutrients and metals from coastal sediments due to resuspension. Mar. Chem., 121, 224–235. [Google Scholar]
  • Kang Y., Song X. and Liu Z., 2013. Sediment resuspension dampens the effect of nutrient inputs on the phytoplankton community: a mesocosm experiment study. Hydrobiologia, 710, 117–127. [CrossRef] [Google Scholar]
  • Kaster J., Val Klump J., Meyer J., Krezoski J. and Smith M., 1984. Comparison of defecation rates of Limnodrilus hoffmeisteri Claparède (Tubificidae) using two different methods. Hydrobiologia, 111, 181–184. [CrossRef] [Google Scholar]
  • Lewandowski J. and Hupfer M., 2005. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments: a laboratory study. Limnol. Oceanogr., 50, 1106–1118. [Google Scholar]
  • Lin Y.-T. and Wu C.H., 2013. Response of bottom sediment stability after carp removal in a small lake. Ann. Limnol. - Int. J. Lim., 49, 157–168. [Google Scholar]
  • Luettich R.A., Harleman D.R.F. and Somlyody L., 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol. Oceanogr., 35, 1050–1067. [Google Scholar]
  • Matisoff G., Fisher J. and Matis S., 1985. Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia, 122, 19–33. [CrossRef] [Google Scholar]
  • Matisoff G., Wang X. and McCall P.L., 1999. Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J. Great Lakes Res., 25, 205–219. [Google Scholar]
  • Mermillod-Blondin F., Nogaro G., Datry T., Malard F. and Gibert J., 2005. Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ. Pollut., 134, 57–69. [Google Scholar]
  • Nogaro G., Mermillod-Blondin F., François-Carcaillet F., Gaudet J.-P., Lafont M. and Gibert J., 2006. Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw. Biol., 51, 1458–1473. [Google Scholar]
  • Nogaro G., Mermillod-Blondin F., Montuelle B., Boisson J.-C., Lafont M., Volat B. and Gibert J., 2007. Do tubificid worms influence organic matter processing and fate of pollutants in stormwater sediments deposited at the surface of infiltration systems? Chemosphere, 70, 315–328. [CrossRef] [PubMed] [Google Scholar]
  • Orvain F., Sauriau P.G., Bacher C. and Prineau M., 2006. The influence of sediment cohesiveness on bioturbation effects due to Hydrobia ulvae on the initial erosion of intertidal sediments: a study combining flume and model approaches. J. Sea Res., 55, 54–73. [Google Scholar]
  • Qin B., 2008. Lake Taihu, China: Dynamics and Environmental Change, Springer, The Netherlands. [Google Scholar]
  • Rodriguez P., Martinez-Madrid M. and Arrate J.A., Navarro E., 2001. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia, 463, 133–140. [CrossRef] [Google Scholar]
  • Schallenberg M. and Burns C.W., 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwat. Biol., 49, 143–159. [Google Scholar]
  • Scheffer M., Portielje R. and Zambrano L., 2003. Fish facilitate wave resuspension of sediment. Limnol. Oceanogr., 48, 1920–1926. [Google Scholar]
  • Sgro L., Mistri M. and Widdows J., 2005. Impact of the infaunal Manila clam, Ruditapes philippinarum, on sediment stability. Hydrobiologia, 550, 175–182. [CrossRef] [Google Scholar]
  • Song X., Liu Z., Yang G. and Chen Y., 2010. Effects of resuspension and eutrophication level on summer phytoplankton dynamics in two hypertrophic areas of Lake Taihu, China. Aquat. Ecol., 44, 41–54. [Google Scholar]
  • Sorokina V. and Kulygin V., 2013. Long-term variability of the water transparency (Secchi Depth) in the Sea of Azov. Oceanology, 53, 287–293. [CrossRef] [Google Scholar]
  • Statzner B., 2012. Geomorphological implications of engineering bed sediments by lotic animals. Geomorphology, 157–158, 49–65. [CrossRef] [Google Scholar]
  • Superville P.-J., Prygiel E., Magnier A., Lesven L., Gao Y., Baeyens W., Ouddane B., Dumoulin D. and Billon G., 2014. Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments. Sci. Total Environ., 470, 600–607. [Google Scholar]
  • Tammeorg O., Niemistö J., Möls T., Laugaste R., Panksep K. and Kangur K., 2013. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquat. Sci., 75, 559–570. [Google Scholar]
  • Welsh D., 2003. It's a dirty job but someone has to do it: the role of marine benthic macrofauna in organic matter turnover and nutrient recycling to the water column. Chem. Ecol., 19, 321–342. [CrossRef] [Google Scholar]
  • Widdows J. and Brinsley M., 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J. Sea Res., 48, 143–156. [Google Scholar]
  • Widdows J., Brinsley M.D., Salkeld P.D. and Lucas C.H., 2000. Influence of biota on spatial and temporal variation in sediment erodability and material flux on a tidal flat (Westerschelde, The Netherlands). Mar. Ecol. Prog. Ser., 194, 23–37. [Google Scholar]
  • Widdows J., Lucas J.S., Brinsley M.D., Salkeld P.N. and Staff F.J., 2002. Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume. Helgoland Mar. Res., 56, 3–12. [Google Scholar]
  • Widdows J., Brinsley M.D. and Pope N.D., 2009. Effect of Nereis diversicolor density on the erodability of estuarine sediment. Mar. Ecol. Prog. Ser., 378, 135–143. [Google Scholar]
  • Yang Z., Feng J., Niu J. and Shen Z., 2008. Release of polycyclic aromatic hydrocarbons from Yangtze River sediment cores during periods of simulated resuspension. Environ. Pollut., 155, 366–374. [Google Scholar]
  • You B., Wang T., Fan C., Zhu L., Zhong J., Li B., Yin H. and Hu C., 2007a. Quantitative simulative method of sediment resuspension in Lake Taihu. J. Lake Sci., 19, 611–617. [Google Scholar]
  • You B., Zhong J., Fan C., Wang T., Zhang L. and Ding S., 2007b. Effects of hydrodynamics processes on phosphorus fluxes from sediment in large, shallow Taihu Lake. J. Environ. Sci., 19, 1055–1060. [Google Scholar]
  • Zhang L., 2010. Changes of Sediment-Water Interface Properties and Phosphorus Dynamics Under Bioturbation in Lake, Nanjing Institute of Geography and Limnology, CAS, Nanjing. [Google Scholar]
  • Zhang L., Gu X., Fan C., Shang J., Shen Q., Wang Z. and Shen J., 2010. Impact of different benthic animals on phosphorus dynamics across the sediment-water interface. J. Environ. Sci., 22, 1674–1682. [Google Scholar]
  • Zimmerman G.F. and de Szalay F.A., 2007. Influence of unionid mussels (Mollusca: Unionidae) on sediment stability: an artificial stream study. Fund. Appl. Limnol., 168, 299–306. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.