Editor's Choice
Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 2, 2014
Page(s) 97 - 107
DOI https://doi.org/10.1051/limn/2014006
Published online 20 March 2014
  • Abele D., Burlando B., Viarengo A. and Pfrtner H.O., 1998. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp. Biochem. Physiol. B, 120, 425–435. [CrossRef] [Google Scholar]
  • Abele D., Heise K., Pfrtner H.O. and Puntarulo S., 2002. Temperature dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol., 205, 1831–1841. [PubMed] [Google Scholar]
  • Allan J.D. and Castillo M.M., 2007. Stream Ecology (2nd edn,), Springer, Dordrecht, The Netherlands, 436 p. [Google Scholar]
  • ASTM – American Society for Testing and Materials., 1980. Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E – 790-80. American Society for Testing and Materials, Philadelphia. [Google Scholar]
  • Batista D., Pascoal C. and Cássio F., 2012. Impacts of warming on aquatic decomposers along a gradient of cadmium stress. Environ. Pollut., 169, 35–41. [CrossRef] [PubMed] [Google Scholar]
  • Boeckman C.J. and Bidwell J.R., 2006. The effects of temperature, suspended solids, and organic carbon on copper toxicity to two aquatic invertebrates. Water Air Soil Pollut., 171, 185–202. [CrossRef] [Google Scholar]
  • Bouskill N.J., Handy R.D., Ford T.E. and Galloway T.S., 2006. Differentiating copper and arsenic toxicity using biochemical biomarkers in Asellus aquaticus and Dreissena polymorpha. Ecotox. Environ. Safe., 65, 342–349. [CrossRef] [Google Scholar]
  • Boveris A., Musacco-Sebio R., Ferrarotti N., Saporito-Magriñá C., Torti H., Massot F. and Repetto M.G., 2012. The acute toxicity of iron and copper: biomolecule oxidation and oxidative damage in rat liver. J. Inorg. Biochem., 116, 63–69. [CrossRef] [PubMed] [Google Scholar]
  • Brix K.V., DeForest D.K. and Adams W.J., 2011. The sensitivity of aquatic insects to divalent metals: a comparative analysis of laboratory and field data. Sci. Total Environ., 409, 4187–4197. [CrossRef] [PubMed] [Google Scholar]
  • Cain D.J. and Luoma S.N., 1998. Metal exposures to native populations of caddisfly Hydropsyche (Trichoptera: Hydropsychedae) determined from cytosolic and whole body metal concentrations. Hydrobiologia, 386, 103–117. [CrossRef] [Google Scholar]
  • Canhoto C. and Graça M.A.S., 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microb. Ecol., 37, 163–172. [CrossRef] [PubMed] [Google Scholar]
  • Canhoto C. and Laranjeira C., 2007. Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. Int. Rev. Hydrobiol., 92(2), 173–182. [CrossRef] [Google Scholar]
  • Canhoto C., Calapez R., Gonçalves A.L. and Moreira-Santos M., 2013. Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshwat. Sci., 32(2), 411–424. [CrossRef] [Google Scholar]
  • Chatzinikolaou Y., Dakos V. and Lazaridou M., 2006. Longitudinal impacts of anthropogenic pressures on benthic macroinvertebrate assemblages in a large transboundary Mediterranean river during the low flow period. Acta Hydrochim. Hydrobiol., 34, 453–463. [CrossRef] [Google Scholar]
  • Cummins K.W., 1973. Trophic relations of aquatic insects. Annu. Rev. Entomol., 18, 183–206. [CrossRef] [Google Scholar]
  • Darlington S.T. and Gower A.M., 1990. Location of copper in larvae of Plectrocnemia conspersa (Curtis) (Trichoptera) exposed to elevated metal concentrations in a mine drainage stream. Hydrobiologia, 196, 91–100. [CrossRef] [Google Scholar]
  • Dédourge-Geffard O., Palais F., Biagianti-Risbourg S., Geffard O. and Geffard A., 2009. Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere, 77, 1569–1576. [CrossRef] [PubMed] [Google Scholar]
  • De Schamphelaere K.A.C. and Janssen C.R., 2004. Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ. Toxicol. Chem., 23, 1365–1375. [CrossRef] [PubMed] [Google Scholar]
  • Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A., Soto D., Stiassny M.L.J. and Sullivan C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Ver., 81, 163–182. [Google Scholar]
  • Farag A.M., Woodward D.F., Goldstein J.N., Brumbaugh W. and Meyer J.S., 1998. Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene river basin, Idaho. Arch. Environ. Contam. Toxicol., 34, 119–127. [CrossRef] [PubMed] [Google Scholar]
  • Faria M.S., Lopes R.J., Nogueira A.J.A. and Soares A.M.V.M., 2007. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination. Environ. Toxicol. Chem., 26, 1968–1977. [CrossRef] [PubMed] [Google Scholar]
  • Faria M.S., Lopes R.J., Malcato J., Nogueira A.J.A. and Soares A.M.V.M., 2008. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas. Environ. Pollut., 151, 213–221. [CrossRef] [PubMed] [Google Scholar]
  • Felten V. and Guérold F., 2006. Short-term physiological responses to a severe acid stress in three macroinvertebrate species: a comparative study. Chemosphere, 63, 1427–1435. [CrossRef] [PubMed] [Google Scholar]
  • Felten V., Baudoin J.M. and Guérold F., 2006. Physiological recovery from episodic acid stress does not mean population recovery of Gammarus fossarum. Chemosphere, 65, 988–998. [CrossRef] [PubMed] [Google Scholar]
  • Felten V., Charmantier G., Charmantier-Daures M., Aujoulat F., Garric J. and Geffard O., 2008. Physiological and behavioural responses of Gammarus pulex exposed to acid stress. Comp. Biochem. Physiol C, 147, 189–197. [Google Scholar]
  • Ferreira V., Gonçalves A.L., Godbold D.W. and Canhoto C., 2010. Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality. Glob. Change Biol., 16, 3284–3296. [CrossRef] [Google Scholar]
  • Forrow D.M. and Maltby L., 2000. Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environ. Toxicol. Chem., 19(8), 2100–2106. [CrossRef] [Google Scholar]
  • Gerhardt A., Janssens de Bisthoven L. and Soares A.M.V.M., 2004. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environ. Pollut., 130, 263–274. [CrossRef] [PubMed] [Google Scholar]
  • Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H. and Hättenschwiler S., 2010. Diversity meets decomposition. Trends Ecol. Evol., 25, 372–380. [CrossRef] [PubMed] [Google Scholar]
  • Gomes S.I.L., Novais S.C., Gravato C., Guilhermino L., Scott-Fordsmand J.J., Soares A.M.V.M. and Amorim M.J.B., 2012. Effect of Cu-nanoparticles versus one Cu-salt: analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta). Nanotoxicology, 6(2), 134–143. [CrossRef] [PubMed] [Google Scholar]
  • Graça M.A.S., Pozo J., Canhoto C. and Elosegi A., 2002. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. Sci. World, 2, 1173–1185. [CrossRef] [Google Scholar]
  • Graça M.A.S., Bärlocher S.F. and Gessner M.O., 2005. Methods to Study Litter Decomposition: A Practical Guide, Springer, The Netherlands, 329 p. [Google Scholar]
  • Grosell M., Nielsen C. and Bianchini A., 2002. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp. Biochem. Physiol. C, 133, 287–303. [Google Scholar]
  • Heise K., Puntarulo S., Pfrtner H.O. and Abele D., 2003. Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp. Biochem. Physiol. C, 134, 79–90. [CrossRef] [Google Scholar]
  • Hogsden K.L. and Harding J.S., 2012. Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwat. Sci., 31, 108–120. [CrossRef] [Google Scholar]
  • Huang F., Rabson D. and Chen W., 2009. Distribution of the Na/K Pumps’ turnover rates as a function of membrane potential, temperature, and ion concentration gradients and effect of fluctuations. J. Phys. Chem. B., 113, 8096–8102. [CrossRef] [PubMed] [Google Scholar]
  • IPCC, 2007. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri R.K. and Reisinger A. (eds.), Core Writing Team, IPCC, Geneva, Switzerland, 104 p. [Google Scholar]
  • Janssens de Bisthoven L., Gerhardt A., Guhr K. and Soares A.M.V.M., 2006. Behavioral changes and acute toxiciy to the freshwater shrimp Atyaephyra desmarestii Millet (Decapoda: Natantia) from exposure to acid mine drainage. Ecotoxicology, 15, 215–227. [CrossRef] [PubMed] [Google Scholar]
  • Kominoski J.S., Follstad Shah J.J., Canhoto C., Fischer D.G., Giling D.P., González E., Griffiths N.A., Larrañaga A., LeRoy C.J., Mineau M.M., McElarney Y.R., Shirley S.M., Swan C.M., and Tiegs S.D., 2013. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ., 11, 423–432. [CrossRef] [Google Scholar]
  • Lapointe D., Pierron F. and Couture P., 2011. Individual and combined effects of heat stress and aqueous or dietary copper exposure in fathead minnows (Pimephales promelas). Aquat. Toxicol., 104, 80–85. [CrossRef] [PubMed] [Google Scholar]
  • Larrañaga A., Basarugen A. and Pozo J., 2009. Impacts of Eucalyptus globulus plantations on physiology and population densities of invertebrates inhabiting Iberian Atlantic streams. Int. Rev. Hydrobiol., 94(4), 497–511. [CrossRef] [Google Scholar]
  • Lecerf A. and Richardson J.S., 2010. Litter decomposition can detect effects of high and moderate levels of forest disturbance on stream condition. Forest Ecol. Manage., 259, 2433–2443. [CrossRef] [Google Scholar]
  • Leslie H.A., Pavluk T.I., Bij de Vaate A. and Kraak M.H.S., 1999. Triad assessment of the impact of chromium contamination on benthic macroinvertebrates in the Chusovaya River (Urals, Russia). Arch. Environ. Contam. Toxicol., 37, 182–189. [CrossRef] [PubMed] [Google Scholar]
  • Liess M. and Beketov M., 2011. Traits and stress: keys to identify community effects of low levels of toxicants in test systems. Ecotoxicology, 20, 1328–1340. [CrossRef] [PubMed] [Google Scholar]
  • Liess M. and Schulz R., 1999. Linking insecticide contamination and population response in an agricultural stream. Environ. Toxicol. Chem., 18(9), 1948–1955. [CrossRef] [Google Scholar]
  • Macedo-Sousa J.A., Pestana J.L.T., Gerhardt A., Nogueira A.J.A. and Soares A.M.V.M., 2007. Behavioural and feeding responses of Echinogammarus meridionalis (Crustacea, Amphipoda) to acid mine drainage. Chemosphere, 67, 1663–1670. [CrossRef] [PubMed] [Google Scholar]
  • Macedo-Sousa J. A., Gerhardt A., Brett C.M.A., Nogueira A.J.A. and Soares A.M.V.M., 2008. Behavioural responses of indigenous benthic invertebrates (Echinogammarus meridionalis, Hydropsyche pellucidula and Choroterpes picteti) to a pulse of Acid Mine Drainage: a laboratorial study. Environ. Pollut., 156, 966–973. [CrossRef] [PubMed] [Google Scholar]
  • Malmqvist B. and Rundle S., 2002. Threats to the running water ecosystems of the world. Environ. Conserv., 29, 134–153. [Google Scholar]
  • Maltby L. and Hills L., 2008. Spray drift of pesticides and stream macroinvertebrates: experimental evidence of impacts and effectiveness of mitigation measures. Environ. Pollut., 156, 1112–1120. [CrossRef] [PubMed] [Google Scholar]
  • Maria V.L. and Bebianno M.J., 2011. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp. Biochem. Physiol. C, 154, 56–63. [Google Scholar]
  • McFeeters B.J. and Frost P.C., 2011. Temperature and the effects of elemental food quality on Daphnia. Freshwat. Biol., 56, 1447–1455. [CrossRef] [Google Scholar]
  • McMahon T.A., Halstead N.T., Johnson S., Raffel T.R., Romansic J.M., Crumrine P.W. and Rohr J.R., 2012. Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services. Ecol. Lett., 15, 714–722. [CrossRef] [PubMed] [Google Scholar]
  • Molinero J. and Pozo J., 2004. Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small stream. Hydrobiologia, 528, 143–165. [CrossRef] [Google Scholar]
  • Morrill J.C., Bales R.C. and Conklin M.H., 2005. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng., 131(1), 139–146. [CrossRef] [Google Scholar]
  • Olivari F.A., Hernández P.P. and Allende M.L., 2008. Acute copper exposure induces oxidative stress and cell death in lateral line hair cells of zebrafish larvae. Brain Res., 124, 1–12. [CrossRef] [Google Scholar]
  • Ormerod S. J., Dobson M., Hildrew A.G. and Townsend C.R., 2010. Multiple stressors in freshwater ecosystems. Freshwat. Bio., 55(1), 1–4. [CrossRef] [Google Scholar]
  • Pantani C., Pannunzio G., DeCristofaro M., Novelli A.A. and Salvatori M., 1997. Comparative acute toxicity of some pesticides, metals, and surfactants to Gammarus italicus Goedm and Echinogammarus tibaldii Pink, and stock (Crustacea: Amphipoda). Bull. Environ. Contam. Toxicol., 59, 963–967. [CrossRef] [PubMed] [Google Scholar]
  • Paquin P.R., Gorsuch J.W., Apte S., Batley G.E., Bowles K.C., Campbell P.G.C., Delos C.G., Di Toro D.M., Dwyer R.L., Galvez F., Gensemer R.W., Goss G.G., Hogstrand C., Janssen C.R., McGreer J.C., Naddy R.B., Playle R.C., Santore R.C., Schneider U., Stubblefield W.A., Wood C.M., Wu K.B., 2002. The biotic ligand model: a historical overview. Comp. Biochem. Physiol. C, 133, 3–35. [Google Scholar]
  • Perkins D.M., Reiss J., Yvon-Durocher G. and Woodward G., 2010. Global change and food webs in running waters. Hydrobiologia, 657, 181–198. [CrossRef] [Google Scholar]
  • Pestana J.L.T., Ré A., Nogueira A.J.A. and Soares A.M.V.M., 2007. Effects of cadmium and zinc on the feeding behavior of two freshwater crustaceans: Atyaephyra desmarestii (Decapoda) and Echinogammarus meridionalis (Amphipoda). Chemosphere, 68, 1556–1562. [CrossRef] [PubMed] [Google Scholar]
  • Peters A., Crane P. and Adams W.J., 2011. Effects of iron on Benthic Macroinvertebrate Communities in the field. Bull. Environ. Contam. Toxicol., 86, 591–595. [CrossRef] [PubMed] [Google Scholar]
  • Pradhan, A., Seena, S., Pascoal, C. and Cássio F., 2012. Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere, 89, 1142–1150. [CrossRef] [PubMed] [Google Scholar]
  • Prato E., Biandolino F. and Scardicchio C., 2009. Effects of temperature on the sensitivity of Gammarus aequicauda (Martynov, 1931) to cadmium. Bull. Environ. Contam. Toxicol., 83, 469–473. [CrossRef] [PubMed] [Google Scholar]
  • Rainbow P.S., 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environ. Pollut., 120, 497–507. [CrossRef] [PubMed] [Google Scholar]
  • Rainbow P.S., 2007. Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ. Int., 33, 576–582. [CrossRef] [PubMed] [Google Scholar]
  • Rainbow P.S., Hildrew A.G., Smith B.D., Geatches T. and Luoma S. N., 2012. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos. Environ. Pollut., 166, 196–207. [CrossRef] [PubMed] [Google Scholar]
  • Richardson J.S. and Danehy R.J., 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Sci., 53, 131–147. [Google Scholar]
  • Roy D.N., Mandal S., Sen G. and Biswas T., 2009. Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats. Chem. Biol. Interact., 182, 136–147. [CrossRef] [PubMed] [Google Scholar]
  • Sacchetti G., Maietti S., Muzzoli M., Scaglianti M., Manfredini S., Radice M. and Bruni R., 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem., 91, 621–632. [CrossRef] [Google Scholar]
  • Sanpéra-Calbet I., Lecerf A. and Chauvet E., 2009. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwat. Bio., 54, 1671–1682. [CrossRef] [Google Scholar]
  • Santore R.C., Di Toro D.M., Paquin P.R., Allen H.E. and Meyer J.S., 2001. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and daphnia. Environ. Toxicol. Chem., 20(10), 2397–2402. [CrossRef] [PubMed] [Google Scholar]
  • Santos R.L., 1997. The Eucalyptus of California: Seeds of Good or Seeds of Evil, Alley-Cass Publications, Denair, CA. [Google Scholar]
  • Singh H.P., Kaur S., Negi K., Kumari S., Saini V., Batish D.R. and Kohli R.K., 2012. Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. Food Sci. Technol., 48, 237–241. [Google Scholar]
  • Sroda S. and Cossu-Leguille C., 2011. Effects of sublethal copper exposure on two gammarid species: which is the best competitor? Ecotoxicology, 20, 264–273. [CrossRef] [PubMed] [Google Scholar]
  • Tattersall G.J., Sinclair B.J., Withers P.C., Fields P.A., Seebacher F., Cooper C.E. and Maloney S. K., 2012. Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr. Physiol., 2, 2151–2202. [PubMed] [Google Scholar]
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130–137. [CrossRef] [Google Scholar]
  • Vieira L.R. and Guilhermino L., 2012. Multiple stress effects on marine planktonic organisms: influence of temperature on the toxicity of polycyclic aromatic hydrocarbons to Tetraselmis chuii. J. Sea Res., 72, 94–98. [CrossRef] [Google Scholar]
  • Vieira L.R., Gravato C., Soares A.M.V.M., Morgado F. and Guilhermino L., 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere, 76, 1416–1427. [CrossRef] [PubMed] [Google Scholar]
  • Wojewodzic M.W., Rachamim T. and Hessen D.O., 2011. Effect of temperature and dietary elemental composition on RNA/protein ratio in a rotifer. Funct. Ecol., 25, 1154–1160. [CrossRef] [Google Scholar]
  • Woodcock T.S. and Huryn A.D., 2005. Leaf litter processing and invertebrate assemblages along a pollution gradient in a Maine (USA) headwater stream. Environ. Pollut., 134, 363–375. [CrossRef] [PubMed] [Google Scholar]
  • Woodward G., Perkins D.M. and Brown L.E., 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil. Trans. R. Soc. Lond. B Biol. Sci., 365, 2093–210. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.