Editor's Choice
Free Access
Ann. Limnol. - Int. J. Lim.
Volume 50, Number 1, 2014
Page(s) 71 - 83
DOI https://doi.org/10.1051/limn/2014001
Published online 14 February 2014
  • Beklioglu M., 1999. A review on the control of eutrophication in deep and shallow lakes. Turk. J. Zool., 23, 327–336. [Google Scholar]
  • Benndorf J., Wissel B., Sell A.F., Hornig U., Ritter P. and Böing W., 2000. Food web manipulation by extreme enhancement of piscivory: an invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica, 30, 235–245. [CrossRef] [Google Scholar]
  • Berg S., Jeppesen E. and Søndergaard M., 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool 1. Effects on the fish population in Lake Lyng, Denmark. Hydrobiologia, 342–343, 311–318. [CrossRef] [Google Scholar]
  • Bertolo A., Lacroix G., Lescher-Moutoue F. and Cardinal-Legrand C., 2000. Plankton dynamics in planktivore- and piscivore- dominated mesocosms. Arch. Hydrobiol., 147, 327–349. [Google Scholar]
  • Beutler M., Wiltshire K.H., Meyer B., Moldaenke C., Luring C., Meyerhofer M., Hansen U.P. and Dau H., 2002. Afluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res., 72, 39–53. [Google Scholar]
  • Blumenshine S.C. and Hambright H.D., 2003. Top-down control in pelagic systems: a role for invertebrate predation. Hydrobiologia, 491, 347–356. [CrossRef] [Google Scholar]
  • Brabrand A., Faafeng B. and Nilssen J.P.M., 1986. Juvenile roach and invertebrate predators: delaying the recovery phase of eutrophic lakes by suppression of efficient filter-feeders. J. Fish Biol., 29, 99–106. [CrossRef] [Google Scholar]
  • Brandl Z., 1998. Life strategy and feeding relations of Cyclops vicinus in two reservoirs. Int. Rev. Hydrobiol., 83, 381–388. [CrossRef] [Google Scholar]
  • Brandl Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546, 475–489. [CrossRef] [Google Scholar]
  • Brett M.T. and Goldman C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 7723–7726. [Google Scholar]
  • Brooks J.L. and Dodson S.I., 1965. Predation, body size, and composition of plankton. Science, 150, 28–35. [CrossRef] [PubMed] [Google Scholar]
  • Carpenter S.R. and Kitchell J.F., 1992. Trophic cascade and biomanipulation: interface of research and management – a reply to the comment by DeMelo et al. Limnol. Oceanogr., 37, 208–213. [CrossRef] [Google Scholar]
  • Carpenter S.R., Kitchell J.F. and Hodgson J.R., 1985. Cascading trophic interactions and lake productivity. BioScience, 35, 634–639. [CrossRef] [Google Scholar]
  • Chang K.H. and Hanazato T., 2005. Impact of selective predation by Mesocyclops pehpeiensis on a zooplankton community: experimental analysis using mesocosms. Ecol. Res., 20, 726–732. [CrossRef] [Google Scholar]
  • Devetter M. and Seda J., 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Římov Reservoir in spring. Int. Rev. Hydrobiol., 91, 101–112. [CrossRef] [Google Scholar]
  • Draštík V., Kubečka J., Tušer M., Čech M., Frouzová J., Jarolím O. and Prchalová M., 2008. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs. Hydrobiologia, 609, 25–36. [CrossRef] [Google Scholar]
  • Dussart B.H. and Defaye D., 2001. Copepoda. Introduction to the Copepoda, Backhuys Publishers, Leiden, 344 p. [Google Scholar]
  • Edmonson W.T., 1971. Methods for processing samples and developing data. In: Edmonson W.T. (ed.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, IPB Handbook, Vol. 17, Blackwell Scientific Publications, Oxford, 127–137. [Google Scholar]
  • Gliwicz Z.M., Hillbricht-Ilkowska A. and Wegleńska T., 1978. Contribution of fish and invertebrate predation to the elimination of zooplankton biomass in two Polish lakes. Verh. Internat. Verein. Limnol., 20, 1007–1011. [Google Scholar]
  • Ha J.-Y., Saneyoshi M., Park H.-D., Toda H., Kitano S., Homma T., Shiina T., Moriyama Y., Chang K.-H. and Hanazato T., 2013. Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan. Limnology, 14, 19–30. [CrossRef] [Google Scholar]
  • Hansson L.-A. and Tranvik L.J., 1996. Quantification of invertebrate predation and herbivory in food chains of low complexity. Oecologia, 108, 542–551. [CrossRef] [PubMed] [Google Scholar]
  • Hansson L.-A., Annadotter H., Bergman E., Hamrin S.F., Jeppesen E., Kairesalo T., Luokkanen E., Nilsson P.-Åk., Søndergaard M. and Strand J., 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems, 1, 558–574. [CrossRef] [Google Scholar]
  • Hansson L.-A., Gyllström M., Stahl-Delbanco A. and Svensson M., 2004. Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biol., 49, 1538–1550. [CrossRef] [Google Scholar]
  • Hessen D.O., 1985. Selective zooplankton predation by pre-adult roach (Rutilus rutilus): the size-selective hypothesis versus the visibility-selective hypothesis. Hydrobiologia, 124, 73–79. [CrossRef] [Google Scholar]
  • Horppila J. and Liljendahl-Nurminen A., 2005. Clay-turbid interactions may not cascade – a reminder for lake managers. Restor. Ecol., 13, 242–246. [CrossRef] [Google Scholar]
  • Hrbáček J., 1962. Species composition and the amount of the zooplankton in relation to the fish stock. Rozpravy Československé akademie věd. Matematické a přírodní vědy, 72, 1–116. [Google Scholar]
  • Hrbáček J. and Hrbáčková-Esslová M., 1960. Fish stock as a protective agent in the occurrence of slow-developing dwarf species and strains of the genus Daphnia. Int. Rev. Gesamten Hydrobiol., 45, 355–358. [CrossRef] [Google Scholar]
  • Hrbáček J., Dvořáková M., Kořínek V. and Procházková L., 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Internat. Verein. Limnol., 14, 192–195. [Google Scholar]
  • Hrbáčková M., 1974. The size of primipae and neonates of Daphnia hyalina Leydig (Crustacea, Cladocera) under natural and enriched food conditions. Věstník Československé společnosti zoologické, 38, 98–105. [Google Scholar]
  • Hülsmann S. and Mehner T., 1997. Predation by underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshwater Biol., 38, 209–219. [CrossRef] [Google Scholar]
  • Jeffries M., 1988. Individual vulnerability to predation: the effect of alternative prey types. Freshwater Biol., 19, 49–56. [CrossRef] [Google Scholar]
  • Kolar C.S. and Wahl D.H., 1998. Daphnid morphology deters fish predators. Oecologia, 116, 556–564. [CrossRef] [PubMed] [Google Scholar]
  • Kubečka J., 1989. Development of the ichtyofauna of the Římov Reservoir and its management. Arch. Hydrobiol. Beih. Ergebn. Limnol., 33, 611–613. [Google Scholar]
  • Kubečka J., Sed'a J. and Matěna J., 1998. Fish-zooplankton interactions during spring in a deep reservoir. Int. Rev. Hydrobiol., 83, 431–442. [Google Scholar]
  • Kurmayer R. and Wanzenböck J., 1996. Top-down effects of underyearling fish on a phytoplankton community. Freshwater Biol., 36, 599–609. [CrossRef] [Google Scholar]
  • Macháček J. and Sed'a J., 1998. Spatio-temporal changes of morphological and life-history parameters in Daphnia galeata in a canyon-shaped dam lake. Int. Rev. Hydrobiol., 83, 171–178. [Google Scholar]
  • Manca M., Vijverberg J., Polishchuk L.V. and Voronov D.A., 2008. Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. J. Limnol., 67, 15–21. [Google Scholar]
  • Mehner T. and Thiel R., 1999. A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environ. Biol. Fish., 56, 169–181. [CrossRef] [Google Scholar]
  • Nicolle A., Hansson L.-A., Brodersen J., Nilsson P.A. and Brönmark C., 2011. Interactions between predation and resources shape zooplankton population dynamics. PLoS ONE, 6, e16534. [CrossRef] [PubMed] [Google Scholar]
  • Persson L. and Greenberg L.A., 1990. Optimal foraging and habitat shift in perch (Perca fluviatilis) in a resource gradient. Ecology, 71, 1699–1713. [CrossRef] [Google Scholar]
  • Persson L., Diehl S., Johansson L., Andersson G. and Hamrin S.F., 1991. Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. J. Fish Biol., 38, 281–293. [Google Scholar]
  • Peterka J. and Matěna J., 2009. Differences in feeding selectivity and efficiency between young-of-the-year European perch (Perca fluviatilis) and roach (Rutilus rutilus) – field observations and laboratory experiments on the importance of prey movement apparency vs. evasiveness. Biologia, 64, 786–794. [CrossRef] [Google Scholar]
  • Post J.R. and McQueen D.J., 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biol., 17, 79–89. [CrossRef] [Google Scholar]
  • Reynolds C.S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 535 p. [Google Scholar]
  • Sed'a M., Kolářová K., Petrusek A. and Macháček J., 2007. Daphnia galeata in the deep hypolimnion: spatial differentiation of a “typical epilimnetic” species. Hydrobiologia, 594, 47–57. [CrossRef] [Google Scholar]
  • Ślusarczyk M., 1997. Impact of fish predation on a small-bodied cladoceran: limitation or stimulation? Hydrobiologia, 342–343, 215–221. [CrossRef] [Google Scholar]
  • Šorf M., Brandl Z., Znachor P. and Vašek M., 2013. Floating large-volume mesocosms as a simple, low-cost experimental design suitable for the variety of lakes and reservoirs. Fundam. Appl. Limnol., 183, 41–48. [CrossRef] [Google Scholar]
  • Straile D. and Halbich A., 2000. Life history and multiple antipredator defenses of an invertebrate pelagic predator, Bythotrephes longimanus. Ecology, 81, 150–163. [CrossRef] [Google Scholar]
  • Straškraba M., 1964. Preliminary results of a new method for the quantitative sorting of freshwater net plankton into main groups. Limnol. Oceanogr., 9, 268–270. [CrossRef] [Google Scholar]
  • Vanni M.J. and Layne C.D., 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology, 78, 21–40. [Google Scholar]
  • Vašek M. and Kubečka J., 2004. In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool., 53, 203–214. [Google Scholar]
  • Vašek M., Kubečka J. and Sed'a J., 2003. Cyprinid predation on zooplankton along the longitudinal profile of a canyon-shaped reservoir. Arch. Hydrobiol., 156, 535–550. [CrossRef] [Google Scholar]
  • Vašek M., Kubečka J., Matěna J. and Seďa J., 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. Int. Rev. Hydrobiol., 91, 178–194. [CrossRef] [Google Scholar]
  • Wallace R. L., Snell T. W., Ricci C. and Nogrady T., 2006. Rotifera. Volume 1: Biology, Ecology and Systematics., Backhuys Publishers and Kenobi Publishers. [Google Scholar]
  • Werner E.E. and Hall D.J., 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology, 55, 1042–1052. [CrossRef] [Google Scholar]
  • Wojtal A., Frankiewicz P., Wagner-Lotkowska I. and Zalewski M., 2004. The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia, 515, 123–135. [CrossRef] [Google Scholar]
  • Wojtal A., Frankiewicz P., Andziak M. and Zalewski M., 2007. The influence of invertebrate predators on Daphnia spatial distribution and survival in laboratory experiments: support for Daphnia horizontal migration in shallow lakes. Int. Rev. Hydrobiol., 92, 23–32. [CrossRef] [Google Scholar]
  • Young S. and Taylor V.A., 1998. Visually guided chases in Polyphemus pediculus. J. Exp. Biol., 137, 387–398. [Google Scholar]
  • Znachor P., Zapomělová E., Řeháková K., Nedoma J. and Šimek K., 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquat. Sci., 70, 77–86. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.