Free Access
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 4, 2013
Page(s) 309 - 318
Published online 18 November 2013
  • Akcaalan R., Young F.M., Metcalf J.S., Morrison L.F., Albay M. and Codd G.A., 2006. Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Water Res., 40, 1583–1590. [CrossRef] [PubMed] [Google Scholar]
  • Almodóvar A., Nicola G.G. and Nuevo M., 2004. Effects of a bloom of Planktothrix rubescens on the fish community of a Spanish reservoir. Limnetica, 23, 167–178. [Google Scholar]
  • Anneville O., Gammeter S. and Straile D., 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw. Biol., 50, 1731–1746. [CrossRef] [Google Scholar]
  • APHA, AWWA and WEF, 2000. Standard Methods for the Examination of Water and Wastewater (19th edn), American Public Health Association, Washington. [Google Scholar]
  • Azevedo S.M.F., Carmichael W.W., Jochimsen E.M., Rinehart K.L., Lau S., Shaw G.R. and Eaglesham G.K., 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology, 182, 441–446. [CrossRef] [Google Scholar]
  • Bogialli S., Nigro Di Gregorio F., Lucentini L., Ferretti E., Ottaviani M., Ungaro N., Abis P.P. and Cannarozzi De Grazia M., 2013. Management of a toxic cyanobacterium bloom (Planktothrix rubescens) affecting an Italian drinking water basin: a case study. Environ. Sci. Technol., 47, 574–583. [CrossRef] [PubMed] [Google Scholar]
  • Buzzi F., 2002. Phytoplankton assemblages in two sub-basins of Lake Como. J. Limnol., 61, 117–128. [CrossRef] [Google Scholar]
  • Carraro E., Guyennon N., Hamilton D., Valsecchi L., Manfredi E.C., Viviano G., Salerno F., Tartari G. and Copetti D., 2012. Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia, 698, 77–95. [CrossRef] [Google Scholar]
  • Cerasino L. and Salmaso N., 2012. Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine district. Oceanol. Hydrobiol. St., 41, 54–63. [CrossRef] [Google Scholar]
  • Chorus I., 2012. Current Approaches to Cyanotoxin Risk Assessment, Risk Management and Regulations in Different Countries, Federal Environment Agency (Umweltbundesamt), Dessau-Roßlau, Germany, 147, Available online at: [Google Scholar]
  • D'alelio D., Gandolfi A., Boscaini A., Flaim G., Tolotti M. and Salmaso N., 2011. Planktothrix populations in subalpine lakes: selection for strains with strong gas vesicles as a function of lake depth, morphometry and circulation. Freshwat. Biol., 56, 1481–1493. [CrossRef] [Google Scholar]
  • de los Ríos A., Ascaso C., Wierzchos J., Fernández-Valiente E. and Quesada A., 2004. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol., 70, 569–580. [CrossRef] [PubMed] [Google Scholar]
  • Dietrich D. and Hoeger S., 2005. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol. Appl. Pharm., 203, 273–289. [CrossRef] [Google Scholar]
  • Dokulil M.T. and Teubner K., 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia, 698, 29–46. [CrossRef] [Google Scholar]
  • Ellison A.M., 2004. Bayesian inference in ecology. Ecol. Lett., 7, 509–520. [CrossRef] [Google Scholar]
  • Fleming L.E., Rivero C., Burns J., William C., Bean J.A., Shea K.A. and Stinn J., 2002. Blue green algae (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae, 1, 57–168. [CrossRef] [Google Scholar]
  • Gallina N., Anneville O. and Beniston M., 2011. Impacts of extreme air temperatures on cyanobacteria in five deep peri-Alpine lakes. J. Limnol., 70, 186–196. [CrossRef] [Google Scholar]
  • Gallina N., Salmaso N., Morabito G. and Beniston M., 2013. Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquat. Ecol., 47, 177–193. [CrossRef] [Google Scholar]
  • Guzzella L., Ghislanzoni L., Pozzoni F., Cerasino L. and Salmaso N., 2010. Determinazione di tossine algali (microcistine e nodularina) nelle acque superficiali. Notiziario dei metodi analitici, IRS-CNR, 1, 17–31. [Google Scholar]
  • Hobbs N.T. and Hilborn R., 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol. Appl., 16, 5–19. [CrossRef] [PubMed] [Google Scholar]
  • Hudnell H.K. (ed.), 2008. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Springer, NY, USA, 949. [Google Scholar]
  • Humbert J.F., Quiblier C. and Gugger M., 2010. Molecular approaches for monitoring potentially toxic marine and freshwater phytoplankton species. Anal. Bioanal. Chem., 397, 1723–1732. [CrossRef] [PubMed] [Google Scholar]
  • Humpage A.R., 2008. Toxin types, toxicokinetics and toxicodynamics. Adv. Exp. Med. Biol., 619, 383–415. [CrossRef] [PubMed] [Google Scholar]
  • Jacquet S., Briand J.-F., Leboulanger C., Avois-Jacquet C., Oberhaus L., Tassin B., Vinçon-Leite B., Paolini G., Druart J.-C., Anneville O. and Humbert J.-F., 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae, 4, 651–672. [CrossRef] [Google Scholar]
  • Kardinaal W.E.A. and Visser P.M., 2005. Dynamics of cyanobacterial toxins. Sources of variability in microcystin concentrations. In: Huisman J., Matthijs H.C.P. and Visser P.M. (eds.), Harmful Cyanobacteria, Springer, Dordrecht, 41–63. [Google Scholar]
  • Kass R.E. and Raftery A.E., 1995. Bayes Factors. J. Am. Stat. Assoc., 90, 773–795. [CrossRef] [MathSciNet] [Google Scholar]
  • Kéry M., 2010. Introduction to WinBUGS for Ecologists. A Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses, Academic Press – Elsevier, Burlington, MA, USA, 302. [Google Scholar]
  • Kristiansen J., 1996. Dispersal of freshwater algae – a review. Hydrobiologia, 336, 151–157. [CrossRef] [Google Scholar]
  • Kurmayer R. and Gumperberger M., 2006. Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol. Ecol., 15, 3849–3861. [CrossRef] [PubMed] [Google Scholar]
  • Kurmayer R., Schober E., Tonk L., Visser P.M. and Christiansen G., 2011. Spatial divergence in the proportions of genes encoding toxic peptide synthesis among populations of the cyanobacterium Planktothrix in European lakes. FEMS Microbiol. Lett., 317, 127–37. [CrossRef] [PubMed] [Google Scholar]
  • Lunn D.J., Thomas A., Best N. and Spiegelhalter D., 2000. WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput., 10, 325–337. [CrossRef] [Google Scholar]
  • Lyck S., 2004. Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. J. Plankton. Res., 26, 727–736. [CrossRef] [Google Scholar]
  • Martin A.D., Quinn K.M. and Park J.H., 2011. MCMCpack: Markov Chain Monte Carlo in R. J. Stat. Soft., 42, 1–21. [Google Scholar]
  • McCarthy M.A., 2007. Bayesian Methods for Ecology, Cambridge University Press, Cambridge, 296. [Google Scholar]
  • McCarthy M.A. and Masters P., 2005. Profiting from prior information in Bayesian analyses of ecological data. J. Appl. Ecol., 42, 1012–1019. [CrossRef] [Google Scholar]
  • Meriluoto J. and Codd G.A. (eds.), 2005. TOXIC Cyanobacterial monitoring and cyanotoxin analysis. Acta Acad. Aboensis B, 65, 149. [Google Scholar]
  • Messineo V., Mattei D., Melchiorre S., Salvatorea G., Bogialli S., Salzano R., Mazza R., Capelli G. and Bruno M., 2006. Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon, 48, 160–174. [CrossRef] [PubMed] [Google Scholar]
  • Metcalf J.S. and Codd G.A., 2012. Cyanotoxins. In: Whitton B.A. (ed.), Ecology of Cyanobacteria II, Springer, Dordrecht, 651–675. [CrossRef] [Google Scholar]
  • Metcalf J.S., Richer R., Cox P.A. and Codd G.A., 2012. Cyanotoxins in desert environments may present a risk to human health. Sci. Total Environ., 421–422, 118–123. [CrossRef] [PubMed] [Google Scholar]
  • Morabito G., Ruggiu D. and Panzani P., 2002. Recent dynamics (1995–1999) of the phytoplankton assemblages in Lago Maggiore as a basic tool for defining association patterns in the Italian deep lakes. J. Limnol., 61, 129–145. [Google Scholar]
  • Naselli-Flores L. and Barone R., 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia, 438, 65–74. [CrossRef] [Google Scholar]
  • Naselli-Flores L., Barone R., Chorus I. and Kurmayer R., 2007. Toxic cyanobacterial blooms in reservoirs under a semiarid mediterranean climate: the magnification of a problem. Environ. Toxicol., 22, 399–404. [CrossRef] [PubMed] [Google Scholar]
  • Nehring S., 1998. Non-indigenous phytoplankton species in the North-Sea: supposed region of origin and possible transport vector. Arch. Fish. Mar. Res., 46, 181–194. [Google Scholar]
  • Neilan B.A., Pearson L.A., Muenchhoff J., Moffitt M.C. and Dittmann E., 2012. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol., 15, 1239–1253. [CrossRef] [PubMed] [Google Scholar]
  • Nürnberg G.K., LaZerte B.D. and Olding D.D., 2003. An artificially induced Planktothrix rubescens surface bloom in a small kettle lake in Southern Ontario compared to blooms world-wide. Lake Reserv. Manag., 19, 307–322. [CrossRef] [Google Scholar]
  • Okello W., Ostermaier V., Portmann C., Gademann K. and Kurmayer R., 2010. Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Res., 44, 2803–2814. [CrossRef] [PubMed] [Google Scholar]
  • Paerl H., 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. In: Hudnell H.K. (ed.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, Springer, New York, 217–237. [CrossRef] [Google Scholar]
  • Paulino S., Valério E., Faria N., Fastner J., Welker M., Tenreiro R. and Pereira P., 2009. Detection of Planktothrix rubescens (Cyanobacteria) associated with microcystin production in a freshwater reservoir. Hydrobiologia, 621, 207–211. [CrossRef] [Google Scholar]
  • Peretyatko A., Teissier S., De Backer S. and Triest L., 2010. Assessment of the risk of cyanobacterial bloom occurrence in urban ponds: probabilistic approach. Ann. Limnol. - Int. J. Lim., 46, 121–133. [CrossRef] [EDP Sciences] [Google Scholar]
  • R Core Team, 2013. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. Available online at: [Google Scholar]
  • Reynolds C.S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 535. [Google Scholar]
  • Rott E., Salmaso N. and Hoehn E., 2007. Quality control of Utermöhl based phytoplankton biovolume estimates – an easy task or a Gordian knot? Hydrobiologia, 578, 141–146. [CrossRef] [Google Scholar]
  • Salmaso N., 2002. Ecological patterns of phytoplankton assemblages in Lake Garda: seasonal, spatial and historical features. J. Limnol., 61, 95–115. [CrossRef] [Google Scholar]
  • Salmaso N., 2011. Interactions between nutrient availability and climatic fluctuations as determinants of the long term phytoplankton community changes in Lake Garda, Northern Italy. Hydrobiologia, 660, 59–68. [CrossRef] [Google Scholar]
  • Salmaso N., Buzzi F., Garibaldi L., Morabito G. and Simona M., 2012a. Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps. Aquat. Sci., 74, 555–570. [CrossRef] [Google Scholar]
  • Salmaso N., Naselli-Flores L. and Padisák J., 2012b. Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia, 698, 375–384. [CrossRef] [Google Scholar]
  • Sedmak B., Eleršek T., Grach-Pogrebinsky O., Carmeli S., Sever N. and Lah T.T., 2008. Ecotoxicologically relevant cyclic peptides from cyanobacterial bloom (Planktothrix rubescens) – a threat to human and environmental health. Radiol. Oncol., 42, 102–113. [CrossRef] [Google Scholar]
  • Sivonen K. and Börner T., 2008. Bioactive compounds produced by cyanobacteria. In: Herrero, A. and Flores E. (eds.), The Cyanobacteria. Molecular Biology, Genomics and Evolution, Caister Academic Press, Norfolk, UK, 159–197. [Google Scholar]
  • Sivonen K. and Jones G.J., 1999. Cyanobacterial toxins. In: Chorus I. and Bartram J. (eds.), Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management, Spon, London, UK, 41–111. [Google Scholar]
  • Sturtz S., Ligges U. and Gelman A., 2005. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw., 12, 1–16. [Google Scholar]
  • Svircev Z., Krstic S., Miladinov-Milkov M., Baltic V. and Vldovic M., 2009. Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J. Environ. Sci. Heal. C, 27, 36–55. [CrossRef] [Google Scholar]
  • Ueno Y., Nagata S., Tsutsumi T., Hasegawa A., Watanabe M.F., Park H.D., Chen G.C., Chen G. and Yu S.Z., 1996. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis, 17, 1317–1321. [CrossRef] [PubMed] [Google Scholar]
  • Valério E., Faria N., Paulino S. and Pereira P., 2008. Seasonal variation of phytoplankton and cyanobacteria composition and associated microcystins in six Portuguese freshwater reservoirs. Ann. Limnol. - Int. J. Lim., 44, 189–196. [CrossRef] [EDP Sciences] [Google Scholar]
  • Walsby A.E. and Schanz F., 2002. Light-dependent growth rate determines changes in the population of Planktothrix rubescens over the annual cycle in Lake Zürich, Switzerland. New Phytol., 154, 671–687. [CrossRef] [Google Scholar]
  • WHO, World Health Organization, 2008. Guidelines for Drinking-water Quality (3rd edn,), incorporating the first and second addenda. Volume 1 Recommendations. WHO, Geneva, 515. [Google Scholar]
  • Yéprémian C., Gugger M.F., Briand E., Catherine A., Berger C., Quiblier C. and Bernard C., 2007. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res., 41, 4446–4456. [CrossRef] [PubMed] [Google Scholar]
  • Yu S.Z., 1989. Drinking water and primary liver cancer. In: Tang Z.Y., Wu M.C. and Xia, S.S. (eds.), Primary Liver Cancer, Springer, Berlin, 30–37. [Google Scholar]
  • Zhou L., Yu H. and Chen K., 2002. Relationship between microcystin in drinking water and colorectal cancer. Biomed. Env. Sci., 15, 166–171. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.