Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 2, 2013
Page(s) 113 - 119
DOI https://doi.org/10.1051/limn/2013046
Published online 13 June 2013
  • Baeyens W., Gao Y., De Galan S., Bilau M., Van Larebeke N. and Leermakers M., 2009. Dietary exposure to total and toxic arsenic inBelgium: importance of arsenic speciation in North Sea fish. Mol. Nutr. Food Res., 53, 558–565. [CrossRef] [PubMed] [Google Scholar]
  • Boudou A. and Ribeyre F., 1997. Mercury in the food web: accumulation and transfer mechanisms. In: Sigel, A. and Sigel, H. (eds), Metal Ions in Biological Systems, Mercury and its Effects on Environment and Biology, Marcel Dekker, New York. [Google Scholar]
  • Burger J. and Campbell K.R., 2004. Species differences in contaminants in fish on and adjacent to the Oak Ridge Reservation, Tennessee. Environ. Res., 96, 145–155. [CrossRef] [PubMed] [Google Scholar]
  • Burger J., Gaines K., Boring S., Stephens W., Snodgrass J. and Gochfeld M., 2001. Mercury and selenium in fish from theSavannah River: species, trophic level, and locational differences. Environ. Res., A, 87, 108–118. [CrossRef] [Google Scholar]
  • Clarkson T. and Mago L., 2006. The toxicology of mercury and its chemical compounds. Critic. Rev. Toxicol., 36, 609–662. [CrossRef] [Google Scholar]
  • De La Rosa D., Olivares S., Lima L., Diaz O., Moyano S., Bastías J. and Muñoz O., 2009a. Estimate of mercury and methyl mercury intake associated with fish consumption from Sagua la Grande River, Cuba. Food Addit. Contam., B, 1–7. [CrossRef] [Google Scholar]
  • De La Rosa D., Lima L., Olivares S., Graham D., Enriquez I., Diaz O., Bastias J. and Muñoz O., 2009b. Assessment of total mercury levels in Clarias gariepinus from the Sagua la Grande River, Cuba. Bull. Environ. Contam. Toxicol., 82, 101–105. [CrossRef] [Google Scholar]
  • De la Rosa-Medero D. and Campbell L., 2008. Implications of Clarias gariepinus (african catfish) propagation in cuban waters. Integr. Environ. Assess. Manag., 4, 521–522. [CrossRef] [PubMed] [Google Scholar]
  • Desta Z., Borgstrøm R., Rosseland B. and Dadebo E., 2007. Lower than expected mercury concentration in piscivorous African sharptooth catfish Clarias gariepinus (Burchell). Sci. Total Environ., 376, 134–142. [CrossRef] [PubMed] [Google Scholar]
  • Díaz-Asencio M., Alonso-Hernández C., Bolanos Y., Gómez-Batista M., Morabito R., Hernández-Albernas J. and Sanchez-Cabeza J., 2009. One century sedimentary record of mercury and lead pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar. Pollut. Bull., 59, 108–115. [CrossRef] [PubMed] [Google Scholar]
  • Donohue J. and Abernathy C., 1999. Exposure to inorganic arsenic from Fish and Shellfish. In: Chappell W., Abemathy C. and Calderon R. (eds), Arsenic Exposure and Health Effects, Elsevier Science, BV. [Google Scholar]
  • Dumont E., Vanhaecke F. and Cornelis R., 2006. Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem., 385, 1304–1323. [CrossRef] [PubMed] [Google Scholar]
  • Environment Canada, 2002. Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota: Methylmercury, National Guidelines and Standard Office, Ottawa, Canada. [Google Scholar]
  • Gonzalez H., 1991. Mercury pollution caused by a chlor- alkali plant. Water Air Soil Pollut., 56, 83–93. [CrossRef] [Google Scholar]
  • Hinck J., Schmitt C., Chojnacki K. and Tillitt D., 2009. Environmental contaminants in freshwater fish and their risk to piscivorous wildlife based on a national monitoring program. Environ. Monit. Assess., 152, 469–494. [CrossRef] [PubMed] [Google Scholar]
  • Kapaj S., Peterson S., Liber K. and Bhattacharya P., 2006. Human health effects from chronic arsenic poisoning–a review. J. Environ. Sci. Health A, Tox. Hazard Subst. Environ. Eng., 41, 2399–2428. [CrossRef] [Google Scholar]
  • Khan M. and Wang F., 2009. Mercury–selenium compounds and their toxicological significance: toward a molecular understanding of the mercury–selenium antagonism. Environ. Toxicol. Chem., 28, 1567–1577. [CrossRef] [PubMed] [Google Scholar]
  • Lemly A.D., 1993. Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ. Monit. Assess., 28, 83–100. [CrossRef] [PubMed] [Google Scholar]
  • Lemly A.D., 1996. Assessing the toxic threat of selenium to fish and aquatic birds. Environ. Monitor. Assess., 43, 19–35. [CrossRef] [Google Scholar]
  • Lemly A.D., 1999. Selenium impacts on fish: an insidious time bomb. Hum. Ecol. Risk Assessment, 5, 1139–1151. [CrossRef] [Google Scholar]
  • Letavayová L., Vlckova V. and Brozmanova J., 2006. Selenium: from cancer prevention to DNA damage. Toxicology, 227, 1–14. [CrossRef] [PubMed] [Google Scholar]
  • Lima A.P.S., Sarkis J.E.S., Shihomatsu H.M. and Müller R.C.S., 2005. Mercury and selenium concentrations in fish samples from Cachoeira do Piriá Municipality, ParáState, Brazil. Environ. Res., 97, 236–244. [CrossRef] [PubMed] [Google Scholar]
  • Luoma S. and Presse T., 2009. Emerging opportunities in management of selenium contamination. Environ. Sci. Technol., 43, 8483. [CrossRef] [PubMed] [Google Scholar]
  • Moreau M., Surico-Bennett J., Vicario-Fisher M., Gerads R., Gersberg R. and Hurlbert S., 2007. Selenium, arsenic, DDT and other contaminants in four fish species in the Salton Sea, California, their temporal trends, and their potential impact on human consumers and wildlife. Lake Reservoir Manag., 23, 536–569. [CrossRef] [Google Scholar]
  • NC-493, 2006. Contaminantes metálicos en alimentos – Regulaciones sanitarias. Oficina Nacional de Normalización, Ciudad de La Habana, Cuba (In Spanish). [Google Scholar]
  • Olivares-Rieumont S., Lima L., Rivero S., Graham D. and Alonso-Hernandez C., 2012. Mercury levels in sediments and mangrove oysters, Crassostrea rizophorae, from the North Coast of Villa Clara, Cuba. Bull. Environ. Contam. Toxicol., 88, 589–93. [CrossRef] [PubMed] [Google Scholar]
  • Sanfeliu C., Sebastia L., Cristofol R. and Rodriguez-Farré E., 2003. Neurotoxicity of organomercurial compounds. Neurotox. Res., 5, 283–306. [CrossRef] [PubMed] [Google Scholar]
  • Schram E., Pedrero Z., Cámara C., Der Heul J. and Luten J., 2008. Enrichment of African catfish with functional selenium originating from garlic. Aquaculture Res., 39, 850–860. [CrossRef] [Google Scholar]
  • Sirot V., Guérin T., Volatier J. and Leblanc, J., 2009. Dietary exposure and biomarkers of arsenic in consumers of fish and shellfish fromFrance. Sci. Total Environ., 407, 1875–1885. [CrossRef] [PubMed] [Google Scholar]
  • Toledo-Pérez J., Llanes-Iglesias J., Millares-Dorado N. and Lazo-de la Vega Valdez J., 2007. Evaluación de dietas alternativas en la alimentación de Clarias gariepinus (Burchell, 1822). REDVET. Revista electrónica de Veterinaria 1695–7504 Volumen VIII Número 6. (In Spanish). [Google Scholar]
  • UNEP Chemicals, 2002. Global Mercury Assessment, UNEP Chemicals, Geneva. [Google Scholar]
  • Williams G., West J., Koch I., Reimer K. and Snow E., 2009. Arsenic speciation in the freshwater crayfish, Cherax destructor Clark. Sci. Total Environ., 407, 2650–2658. [CrossRef] [PubMed] [Google Scholar]
  • World Health Organization, 1990. Environmental Health Criteria 101: Methylmercury. Programme of Chemical Safety, World Health Organization, Geneva, Switzerland. [Google Scholar]
  • Yang D.Y., Chen Y.W., Gunn J.M. and Belzile N., 2008. Selenium and mercury in organisms: interactions and mechanisms. Environ. Rev., 16, 71–92. [CrossRef] [Google Scholar]
  • Yang D.Y., Ye X., Chen Y.W. and Belzile N., 2010. Inverse relationships between selenium and mercury in tissues of young walleye (Stizosedion vitreum) from Canadian boreal lakes. Sci. Total Environ., 408, 1676–1683. [CrossRef] [PubMed] [Google Scholar]
  • Zeng H., Uthus E. and Combs G., 2005. Mechanistic aspects of the interaction between selenium and arsenic. J. Inorg. Biochem., 99, 1269–1274. [CrossRef] [PubMed] [Google Scholar]
  • Zheng W., Pan J. and Liu W., 1988. Culture of catfish in China. Aquaculture, 75, 35–44. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.