Editor's Choice
Free Access
Issue
Ann. Limnol. - Int. J. Lim.
Volume 49, Number 1, 2013
Page(s) 13 - 19
DOI https://doi.org/10.1051/limn/2013035
Published online 18 March 2013
  • Abelho M., 2001. From litterfall to breakdown in streams: a review. Scientific World, 1, 656–680. [CrossRef] [Google Scholar]
  • Abelho M. and Graça M.A.S., 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia, 324, 195–204. [CrossRef] [Google Scholar]
  • Abelho M. and Graça M.A.S., 1998. Litter in a first-order stream of a temperate deciduous forest (Margaraça forest, Central Portugal). Hydrobiologia, 386, 147–152. [CrossRef] [Google Scholar]
  • Allan J.D. and Castillo M.M., 2007. Stream ecology. Structure and Function of Running Waters (2nd edn,), Springer, Dordrecht, The Netherlands, 436 p. [Google Scholar]
  • APHA, 1995. Standard Methods for the Examination of Water and Watershed (19th edn,), American Public Health Association, Washington, DC, USA. [Google Scholar]
  • Azevedo-Pereira H.V.S., Graça M.A.S. and González J.M., 2006. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia, 559, 183–192. [CrossRef] [Google Scholar]
  • Bärlocher F. and Brendelberger H., 2004. Clearance of aquatic hyphomycete spores by a benthic suspension feeder. Limnol. Oceanogr., 49, 2292–2296. [CrossRef] [Google Scholar]
  • Benstead J.P. and Huryn A.D., 2011. Extreme seasonality of litter breakdown in an arctic spring-fed stream is driven by shredder phenology, not temperature. Freshwat. Biol., 56, 2034–2044. [CrossRef] [Google Scholar]
  • Boyero L., Pearson R.G., Dudgeon D., Graca M.A.S., Gessner M.O., Albarino R.J., Ferreira V., Yule C.M., Boulton A.J., Arunachalam M., Callisto M., Chauvet E., Ramirez A., Chara J., Moretti M.S., Goncalves J.F. Jr, Helson J.E., Chará-Serna A.M., Encalada A.C., Davies J.N., Lamothe S., Cornejo A., Li A.O.Y., Buria L.M., Villanueva V.D., Zuniga M.C. and Pringle C.M., 2011. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 92, 1839–1848. [CrossRef] [PubMed] [Google Scholar]
  • Canhoto C. and Graça M.A.S., 1998. Leaf retention: a comparative study between two stream categories and leaf types. Verh. Int. Verein. Limnol., 26, 990–993. [Google Scholar]
  • Canhoto C. and Graça M.A.S., 2008. Interactions between fungi (Aquatic Hyphomycetes) and invertebrates. In: Sridhar K.R., Bärlocher F. and Hyde K.D. (eds.), Novel Techniques and Ideas in Mycology. Fungal diversity research series, University of Hong Kong, Hong Kong, 205–325. [Google Scholar]
  • Chergui H. and Pattee E., 1990. The influence of season on the breakdown of submerged leaves. Archiv. Hydrobiol., 120, 1–12. [Google Scholar]
  • Chung N. and Suberkropp K., 2009. Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera; Limnephilidae). Hydrobiologia, 630, 257–269. [CrossRef] [Google Scholar]
  • Cornut J., Elger A., Lambrigot D., Marmonier P. and Chauvet E., 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwat. Biol., 55, 2541–2556. [CrossRef] [Google Scholar]
  • Cuffney T.F. and Wallace J.B., 1989. Discharge-export relationships in headwater streams: the influence of invertebrate manipulations and drought. J. N. Am. Benthol. Soc., 8, 331–341. [CrossRef] [Google Scholar]
  • Cuffney T.F., Wallace J.B. and Lugthart G.J., 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwat. Biol., 23, 281–299. [CrossRef] [Google Scholar]
  • Cummins K.W. and Klug M.T., 1979. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst., 10, 147–172. [CrossRef] [Google Scholar]
  • Cummins K.W., Wilzbach M.A., Gates D.M., Perry J.B. and Talaiferro W.B., 1989. Shredders and rinaprian vegetation. Bioscience, 39, 24–30. [CrossRef] [Google Scholar]
  • Dang C.K., Schindler M., Chauvet E. and Gessner M.O., 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology, 90, 122–131. [CrossRef] [PubMed] [Google Scholar]
  • Ferreira V. and Chauvet E., 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biol., 17, 551–564. [CrossRef] [Google Scholar]
  • Ferreira V., Encalada A.C. and Graça M.A.S., 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwat. Sci., 31, 945–962. [CrossRef] [Google Scholar]
  • Ferreira V., Graça M.A.S., de Lima J.L.M.P. and Gomes R., 2006a. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch. Hydrobiol., 165, 493–513. [CrossRef] [Google Scholar]
  • Ferreira V., Gulis V. and Graça M.A.S., 2006b. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729. [CrossRef] [PubMed] [Google Scholar]
  • Gessner M.O. and Chauvet E., 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 75, 1807–1817. [CrossRef] [Google Scholar]
  • Gessner M.O., Chauvet E. and Dobson M., 1999. A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384. [CrossRef] [Google Scholar]
  • González J.M. and Graça M.A.S., 2003. Conversion of leaf litter to secondary production by a shredding caddis-fly. Freshwat. Biol., 48, 1578–1592. [CrossRef] [Google Scholar]
  • Graça M.A.S., Cressa C., Gessner M.O., Feio M.J., Callies K.A. and Barrios C., 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwat. Biol., 46, 947–957. [CrossRef] [Google Scholar]
  • Gulis V. and Suberkropp K., 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwat. Biol., 48, 123–134. [CrossRef] [Google Scholar]
  • Gulis V., Ferreira V. and Graça M.A.S., 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwat. Biol., 51, 1655–1669. [CrossRef] [Google Scholar]
  • Hieber M. and Gessner M.O., 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038. [CrossRef] [Google Scholar]
  • Izagirre O. and Elosegi A., 2005. Environmental control of seasonal and inter-annual variations of periphytic biomass in a North Iberian stream. Ann. Limnol. - Int. J. Lim., 41, 35–46. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jonsson H. and Malmqvist B., 2005. Species richness and composition effects in a detrital processing chain. J. N. Am. Benthol. Soc., 24, 798–806. [CrossRef] [Google Scholar]
  • Larrañaga S., Díez J.R., Elosegi A. and Pozo J., 2003. Leaf retention in streams of the Agüera basin (northern Spain). Aquat. Sci., 65, 158–166. [Google Scholar]
  • Molinero J. and Pozo J., 2004. Impact of a eucalyptus (Eucalyptus globulos Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small stream. Hydrobiologia, 528, 143–165. [CrossRef] [Google Scholar]
  • Molinero J., Pozo J. and González E., 1996. Litter breakdown in streams of the Agüera catchment: influence of dissolved nutrients and land use. Freshwat. Biol., 36, 745–756. [CrossRef] [Google Scholar]
  • Mulholland P.J., 2004. The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed. Biogiochemistry, 70, 403–426. [CrossRef] [Google Scholar]
  • Nikolcheva J.G. and Bärlocher F., 2005. Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ. Microbiol., 7, 270–280. [CrossRef] [PubMed] [Google Scholar]
  • Richardson J.S., Hoover T.M. and Lecerf A., 2009. Coarse particulate organic matter dynamics in small streams: towards linking function to physical structure. Freshwat. Biol., 54, 2116–2126. [CrossRef] [Google Scholar]
  • Rosemond A.D., Pringle C.M., Ramírez A., Paul M.J. and Meyer J.L., 2002. Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnol. Oceanogr., 47, 278–289. [CrossRef] [Google Scholar]
  • Sakamaki T. and Richardson J.S., 2011. Biogeochemical properties of fine particulate organic matter as an indicator of local and catchment impacts on forested streams. J. Appl. Ecol., 48, 1462–1471. [CrossRef] [Google Scholar]
  • Swan C.M. and Palmer M.A., 2004. Leaf diversity alters litter breakdown in a Piedmont stream. J. N. Am. Benthol. Soc., 23, 15–28. [CrossRef] [Google Scholar]
  • Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. and Cushing C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130–137. [CrossRef] [Google Scholar]
  • Webster J.R., Newbold J.D., Thomas S.A., Valett H.M. and Mulholland P.J., 2009. Nutrient uptake and mineralization during leaf decay in streams – a model simulation. Int. Rev. Hydrobiol., 94, 371–390. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.